- VirtualBox/Install Arch Linux as a guest
- Contents
- Installation in EFI mode (optional)
- Installation in EFI mode on VirtualBox
- Install the Guest Additions
- Set optimal framebuffer resolution
- Load the VirtualBox kernel modules
- Launch the VirtualBox guest services
- Auto-resize Guest Display
- Hardware acceleration
- Enable shared folders
- Manual mounting
- Automounting
- Mount at boot
- Troubleshooting
- Access serial port from guest
- Guest freezes after starting Xorg
- Fullscreen mode shows blank screen
- Linux guests have slow/distorted audio
- Linux guests have slow/laggy audio
- Arch: pacstrap script fails
- Windows host: VERR_ACCESS_DENIED
- No hardware 3D acceleration in Arch Linux guest
- Разбираемся с установкой и загрузкой Linux на примере ArchLinux
- Подготовительные работы
- Базовая установка
- Запуск при загрузке с помощью systemd на примере NTP и SSH
- Забегая вперед или знакомимся с обработчиками (hooks)
- Как происходит загрузка системы
- Готовим initramfs
- Пишем службу обновления DNS для использования с systemd
- Перед первым запуском
VirtualBox/Install Arch Linux as a guest
This article is about installing Arch Linux in VirtualBox.
Boot the Arch installation media through one of the virtual machine’s virtual drives. Then, complete the installation of a basic Arch system as explained in the Installation guide.
Contents
Installation in EFI mode (optional)
Enabling EFI for Arch as guest is optional. If you want to install Arch Linux in EFI mode inside VirtualBox, you must change the firmware mode for the virtual machine. This must be done before installing Arch as guest, changing the option afterwards will result in unbootable machine unless the setting is reverted.
To enable EFI for a virtual machine using the graphical interface, open the settings of the virtual machine, choose System item from the panel on the left and Motherboard tab from the right panel, and check the checkbox Enable EFI (special OSes only).
Alternatively the same can be accomplished from the command line using VBoxManage:
efi will set the firmware for the virtual machine to EFI with the bitness matching the virtual machine’s CPU. To get a specific EFI bitness, set the firmware to efi64 for x86_64 EFI or efi32 for IA32 EFI.
After selecting the kernel from the Arch Linux installation media’s menu, the media will hang for a minute or two and will continue to boot the kernel normally afterwards. Be patient.
Starting with VirtualBox 6.1 the issue of forgetting NVRAM contents on shutdown is fixed. Proceed with the installation just as on a regular UEFI system.
Installation in EFI mode on VirtualBox
Once the system and the boot loader are installed, VirtualBox will first attempt to run /EFI/BOOT/BOOTX64.EFI from the ESP. If that first option fails, VirtualBox will then try the EFI shell script startup.nsh from the root of the ESP. This means that in order to boot the system you have the following options:
- Launch the bootloader manually from the EFI shell every time;
- Move the bootloader to the default /EFI/BOOT/BOOTX64.EFI path;
- Create a script named startup.nsh at the ESP root containing the path to the boot loader application, e.g. \EFI\grub\grubx64.efi .
- Boot directly from the ESP partition using a startup.nsh script.
Do not bother with the VirtualBox Boot Manager (accessible with F2 at boot), as it is buggy and incomplete. It does not store efivars set interactively. Therefore, EFI entries added to it manually in the firmware (accessed with F12 at boot time) or with efibootmgr will persist after a reboot but are lost when the VM is shut down.
Install the Guest Additions
VirtualBox Guest Additions provides drivers and applications that optimize the guest operating system including improved image resolution and better control of the mouse. Within the installed guest system, install:
- virtualbox-guest-utils for VirtualBox Guest utilities with X support
- virtualbox-guest-utils-nox for VirtualBox Guest utilities without X support
The guest additions running on your guest, and the VirtualBox application running on your host must have matching versions, otherwise the guest additions (like shared clipboard) may stop working. If you upgrade your guest (e.g. pacman -Syu ), make sure your VirtualBox application on this host is also the latest version. «Check for updates» in the VirtualBox GUI is sometimes not sufficient; check the VirtualBox.org website.
Set optimal framebuffer resolution
This article or section is a candidate for merging with VirtualBox/Tips and tricks#Set guest starting resolution.
Typically after installing Guest Additions, a fullscreen Arch guest running X will be set to the optimal resolution for your display; however, the virtual console’s framebuffer will be set to a standard, often smaller, resolution detected from VirtualBox’s custom VESA driver.
To use the virtual consoles at optimal resolution, Arch needs to recognize that resolution as valid, which in turn requires VirtualBox to pass this information along to the guest OS.
First, check if your desired resolution is not already recognized by running the command ( hwinfo need to be installed):
If the optimal resolution does not show up, then you will need to run the VBoxManage tool on the host machine and add «extra resolutions» to your virtual machine (on a Windows host, go to the VirtualBox installation directory to find VBoxManage.exe ). For example:
The parameters «Arch Linux» and «1360x768x24» in the example above should be replaced with your VM name and the desired framebuffer resolution. Incidentally, this command allows for defining up to 16 extra resolutions («CustomVideoMode1» through «CustomVideoMode16»).
Afterwards, restart the virtual machine and run hwinfo —framebuffer once more to verify that the new resolutions have been recognized by your guest system (which does not guarantee they will all work, depending on your hardware limitations).
Finally, add a video=resolution kernel parameter to set the framebuffer to the new resolution, for example:
Additionally you may want to configure your bootloader to use the same resolution. If you use GRUB, see GRUB/Tips and tricks#Setting the framebuffer resolution.
Load the VirtualBox kernel modules
To load the modules automatically, enable vboxservice.service which loads the modules and synchronizes the guest’s system time with the host.
To load the modules manually, type:
Launch the VirtualBox guest services
After the rather big installation step dealing with VirtualBox kernel modules, now you need to start the guest services. The guest services are actually just a binary executable called VBoxClient which will interact with your X Window System. VBoxClient manages the following features:
- shared clipboard and drag and drop between the host and the guest;
- seamless window mode;
- the guest display is automatically resized according to the size of the guest window;
- checking the VirtualBox host version
All of these features can be enabled independently with their dedicated flags:
Notice that VBoxClient can only be called with one flag at a time, each call spawning a dedicated service process. As a shortcut, the VBoxClient-all bash script enables all of these features.
virtualbox-guest-utils installs /etc/xdg/autostart/vboxclient.desktop that launches VBoxClient-all on logon. If your desktop environment or window manager does not support XDG Autostart, you will need to set up autostarting yourself, see Autostarting#On desktop environment startup and Autostarting#On window manager startup for more details.
VirtualBox can also synchronize the time between the host and the guest, to do this, start/enable the vboxservice.service .
Now, you should have a working Arch Linux guest. Note that features like clipboard sharing are disabled by default in VirtualBox, and you will need to turn them on in the per-VM settings if you actually want to use them (e.g. Settings > General > Advanced > Shared Clipboard).
Auto-resize Guest Display
This option will automatically change the resolution of the Arch guest, whenever the window of the virtual machine is resized. This option is enabled by default, and in graphical interface is located at View -> Auto-resize Guest Display. When using KDE Plasma, on GUI login screen (Session) select Plasma (X11) instead of the default session Plasma (Wayland), which does not work with auto-resize.
Hardware acceleration
Hardware acceleration can be activated in the VirtualBox options. The GDM display manager 3.16+ is known to break hardware acceleration support. [1] So if you get issues with hardware acceleration, try out another display manager (lightdm seems to work fine). [2] [3]
If the hardware acceleration does not work as expected, try changing the Graphics Controller option found under the Screen tab in the Display options of the settings GUI. It seems that depending on the host GPU type, not all emulated controllers work equally well.
Enable shared folders
Shared folders are managed on the host, in the settings of the Virtual Machine accessible via the GUI of VirtualBox, in the Shared Folders tab. There, Folder Path, the name of the mount point identified by Folder name, and options like Read-only, Auto-mount and Make permanent can be specified. These parameters can be defined with the VBoxManage command line utility. See there for more details.
No matter which method you will use to mount your folder, all methods require some steps first.
To avoid this issue /sbin/mount.vboxsf: mounting failed with the error: No such device , make sure the vboxsf kernel module is properly loaded. It should be, since we enabled all guest kernel modules previously.
Two additional steps are needed in order for the mount point to be accessible from users other than root:
- the virtualbox-guest-utils package created a group vboxsf (done in a previous step);
- your user must be in vboxsf user group.
Manual mounting
Use the following command to mount your folder in your Arch Linux guest:
where shared_folder_name is the Folder name assigned by the hypervisor when the share was created.
If the user is not in the vboxsf group, to give them access to our mountpoint we can specify the mount(8) options uid= and gid= with the corresponding values of the user. These values can obtained from the id command run against this user. For example:
Automounting
In order for the automounting feature to work you must have checked the auto-mount checkbox in the GUI or used the optional —automount argument with the command VBoxManage sharedfolder .
The shared folder should now appear as /media/sf_shared_folder_name . If users cannot access the shared folders, check that /media has permissions 755 or is owned by the vboxsf group if using permissions 750 . This is currently not the default if the /media directory is created by vboxservice.service .
You can use symlinks if you want to have a more convenient access and avoid to browse in that directory, e.g.:
Mount at boot
You can mount your directory with fstab. However, to prevent startup problems with systemd, noauto,x-systemd.automount should be added to /etc/fstab . This way, the shared folders are mounted only when those mount points are accessed and not during startup. This can avoid some problems, especially if the guest additions are not loaded yet when systemd reads fstab and mounts the partitions.
- sharedFolderName : the value from the VirtualMachine’s Settings > SharedFolders > Edit > FolderName menu. This value can be different from the name of the real folder name on the host machine. To see the VirtualMachine’s Settings go to the host OS VirtualBox application, select the corresponding virtual machine and click on Settings.
- /path/to/mntPtOnGuestMachine : if not existing, this directory should be created manually (for example by using mkdir).
- dmode / fmode are directory/file permissions for directories/files inside /path/to/mntPtOnGuestMachine .
As of 2012-08-02, mount.vboxsf does not support the nofail option:
Troubleshooting
Access serial port from guest
Guest freezes after starting Xorg
Faulty or missing drivers may cause the guest to freeze after starting Xorg, see for example [4] and [5]. Try disabling 3D acceleration in Settings > Display, and check if all Xorg drivers are installed.
Fullscreen mode shows blank screen
On some window managers (i3, awesome), VirtualBox has issues with fullscreen mode properly due to the overlay bar. To work around this issue, disable Show in Full-screen/Seamless option in Guest Settings > User Interface > Mini ToolBar. See the upstream bug report for more information.
If the guest’s screen goes black above a certain size (e.g. above 2048 pixels wide), increasing the Settings > Display > Screen > Video Memory can help.
Linux guests have slow/distorted audio
The AC97 audio driver within the Linux kernel occasionally guesses the wrong clock settings when running inside VirtualBox, leading to audio that is either too slow or too fast. To fix this, create a file in /etc/modprobe.d/ with the following line:
Linux guests have slow/laggy audio
In some cases, audio can have laggy performance (for example lag behind video when streaming video online). A possible workaround can be to use the Intel HD Audio controller in VirtualBox and disable its power saving by adding the following line in a file in /etc/modprobe.d/ in the guest OS:
Arch: pacstrap script fails
If you used pacstrap in this article to also #Install the Guest Additions before performing a first boot into the new guest, you will need to umount -l /mnt/dev as root before using pacstrap again; a failure to do this will render it unusable.
Windows host: VERR_ACCESS_DENIED
To access the raw VMDK image on a Windows host, run the VirtualBox GUI as administrator.
No hardware 3D acceleration in Arch Linux guest
virtualbox-guest-utils package as of version 5.2.16-2 does not contain the file VBoxEGL.so . This causes the Arch Linux guest to not have proper 3D acceleration. See FS#49752.
To deal with this problem, apply the patch set at FS#49752#comment152254. Some fix to the patch set is required to make it work for version 5.2.16-2.
Источник
Разбираемся с установкой и загрузкой Linux на примере ArchLinux
Сначала мы установим Archlinux и превратим его в загрузочный сервер. Прямо оттуда подготовим новую компактную систему, в которую добавим минимальное графическое окружение и самый необходимый функционал (на примере Firefox). Научим нашу систему загружаться по сети даже на компьютерах с UEFI. Затем полностью переведём её в режим «только для чтения» (сделаем «живой»), что позволит нам использовать систему одновременно хоть на пол сотне разномастных компьютеров с одним единственным загрузочным сервером. Это всё будет работать даже внутри дешёвой 100-Мб сети, которую мы дополнительно «разгоним» в пару раз.
Никакие закладки в жестких дисках будут вам не страшны, потому что дисков у нас не будет. Никакие очумелые ручки пользователей ничего не сломают, т. к. после перезагрузки система вернется в первозданное лично вами состояние. Конечно же, вы научитесь и сможете самостоятельно изменять загружаемую систему таким образом, чтобы в ней содержался только нужный вам функционал и ничего лишнего. Между делом мы выясним, как и в каком порядке загружается Linux, а также из чего он состоит. Знания, как известно, — бесценны, поэтому я делюсь ими даром.
Постараюсь без долгих рассуждений пояснять происходящее, иногда забегая немного вперёд, но впоследствии обязательно раскладывая всё по полочкам. Чтобы у вас вообще не возникало проблем с пониманием, предполагаю, что вы уже работали с каким-нибудь готовым дистрибутивом Linux, пробовали писать простые скрипты с помощью nano или другого текстового редактора. Если вы новичок в ArchLinux, то узнаете много нового, а если «старичок», то узнаете поменьше, но, надеюсь, что в любом случае вы ещё сильнее полюбите Linux.
Информации оказалось очень много. И по устоявшейся голливудской традиции впереди вас ждёт сериал в нескольких частях:
продолжение;
окончание.
Сейчас мы установим Archlinux в VirtualBox, который можно будет клонировать и запускать практически на любом компьютере с legacy BIOS без каких-либо дополнительных настроек. Между делом мы познакомимся с основными приёмами работы с systemd, а также узнаем как его использовать для запуска произвольных служб и программ во время загрузки. Ещё мы увидим, какие этапы проходит Linux при загрузке, и напишем собственный обработчик (hook), который поместим в initramfs. Не знаете что такое initramfs? Тогда заходите под кат.
Есть много причин, по которым выбор пал именно на Archlinux. Первая причина: он мой давний изворотливый приятель и верный помощник. Gentoo, как пишут на просторах Интернета, ещё более изворотлив, но собирать систему из исходников не хочется. Вторая причина: в готовых сборках всегда содержится много лишнего, а перекачивание больших объемов данных может критично сказаться на производительности сети, да и ничего не видно за широкой спиной «автоматического инсталлятора» — это третья причина. Четвертая: systemd постепенно проникает во все дистрибутивы и даже в Debian, так что мы сможем хорошенько покопаться в грядущем готовых дистрибутивов на примере Archlinux. При всём при этом, систему, которую мы позднее подготовим, можно будет загружать по сети не только сервера, работающего в виртуальной машине, но и с обычного компьютера, например, с Raspberry Pi, и даже с Western Digital My Cloud (проверено), который работает под Debian.
Подготовительные работы
Скачиваем свежий образ по ссылке с официального сайта. В Москве с серверов Яндекса, например, загрузка происходит очень быстро, и если у вас процесс затянулся — просто попробуйте качать в другом месте. Рекомендую запомнить в каком, т. к. эта информация нам ещё пригодится.
В VirtualBox создаем новую виртуальную машину (например, с 1 Гб оперативной памяти и 8 Гб накопителем). В настройках сети необходимо выбрать тип подключения «сетевой мост» и подходящий сетевой адаптер с доступом к сети Интернет. Подключаем скаченный образ к CD-ROM’у. Если не терпится начать работать с железом, то берите флешку и записывайте образ с помощью Win32 Disk Imager (если работаете под Windows), а потом загружайте будущий сервер прямо с неё.
Включаем машину, дожидаемся появления командной строки и устанавливаем пароль, без которого SSH работать не будет:
Запускаем сервер SSH командой:
Остается узнать IP адрес машины, изучив вывод команды:
Адрес будет указан сразу после «inet».
Теперь пользователи Windows смогут подключиться к машине с помощью putty, а потом будут копировать отсюда команды и вставлять их и нажатием правой кнопки мыши.
Базовая установка
Дальше максимально коротко опишу стандартную установку Archlinux. Если появятся вопросы, то ответы на них вы, вероятно, найдете в Подробном описании установки для новичков. Wiki просто замечательная, а англоязычная wiki даже актуальная, так что старайтесь пользоваться именно ей.
Подготавливаем носитель с помощью cfdisk (это консольная утилита с простым и понятным интерфейсом). Нам достаточно одного раздела, только не забудьте пометить его как загрузочный:
Форматируем в ext4 и устанавливаем метку, например HABR:
Будущий корневой раздел монтируем в /mnt:
Archlinux обычно устанавливается через интернет, поэтому сразу после установки у вас будет самая новая и актуальная версия. Список репозиториев находится в файле /etc/pacman.d/mirrorlist. Постарайтесь вспомнить, откуда скачивали дистрибутив и перенесите эти серверы в самое начало списка — так вы серьезно сэкономите время на следующем шаге. Обычно это серверы, географически расположенные там же, где вы сейчас находитесь.
Устанавливаем базовый набор пакетов и набор для разработчиков:
Теперь воспользуемся командой arch-chroot, которая позволяет временно подменить корневой каталог на любой другой, в котором есть структура корневой файловой системы Linux. При этом программы, которые мы оттуда запустим, не будут знать о том, что снаружи ещё что-то существует. Мы практически окажемся в нашей новой системе с правами администратора:
Обратите внимание, как поменялось приглашение командной строки.
Выбираем языки, которые планируем использовать. Предлагаю оставить en_US.UTF-8 UTF-8 и ru_RU.UTF-8 UTF-8. В текстовом редакторе нужно просто снять комментарии напротив них:
Теперь генерируем выбранные локализации:
Если всё прошло хорошо, то вы увидите примерно такой текст:
Устанавливаем язык, который будет использоваться по-умолчанию:
А также раскладку и шрифт в консоли:
Указываем часовой пояс (я использую московское время):
Придумываем название для нашего будущего сервера:
Теперь установим пароль администратора. Делаем мы это в первую очередь из-за того, что SSH не позволит нам подключиться к системе без пароля. Тему неразумности использования системы, незащищенной паролем, здесь мы развивать не будем.
Дважды вводим пароль и убеждаемся, что password updated successfully.
Добавим нового пользователя с именем username (можете выбрать любое), наделим его правами администратора и зададим ему пароль из тех же соображений, а ещё и из-за того, что под root в текущей версии Arch мы не сможем собирать пакеты из AUR (Arch User Repository — это репозиторий от сообщества пользователей Arch Linux с программами, которые не вошли в основной репозиторий):
Редактируем файл настроек /etc/sudoers с помощью nano:
Добавив в него сразу после строки «root ALL=(ALL) ALL» ещё одну строчку:
И задаём пароль для пользователя username:
Теперь нужно установить загрузчик на внутренний накопитель, чтобы система смогла самостоятельно с него загрузиться. В качестве загрузчика предлагаю использовать GRUB, потому что позже он нам снова пригодится. Устанавливаем пакеты с помощью стандартного для Archlinux менеджера пакетов pacman:
Записываем загрузчик в MBR (Master Boot Record) нашего внутреннего накопителя.
Если всё прошло нормально, то вы увидите Installation finished. No error reported.
Выходим из chroot:
И замечаем, как поменялось приглашение командной строки.
Мы будем использовать метки дисков, подробное объяснение этого утверждения последует позже.
Снимите комментарий со строки GRUB_DISABLE_LINUX_UUID=true, чтобы не использовались UUID накопителей:
Генерируем файл конфигурации загрузчика, снова используя arch-chroot. Будет произведён вход, выполнение одной единственной команды, и последует автоматический выход:
Нам нужно заменить все упоминания /dev/sda1 на LABEL=HABR в файле конфигурации:
Если поменять в этом же файле строку set lang=en_US на set lang=ru_RU, то загрузчик будет общаться с нами на великом и могучем.
Генерируем файл fstab с ключом -L, который заставит генератор использовать метки дисков:
На этом базовая установка ArchLinux закончена. Система будет загружаться самостоятельно и встретит вас приветливым русскоязычным интерфейсом командной строки. Если после этого мы введем команду dhcpcd, то скорее всего даже Интернет заработает. Но мы пока не будем торопиться с перезагрузкой.
Запуск при загрузке с помощью systemd на примере NTP и SSH
Поскольку наша система будет общаться с другими компьютерами, нам потребуется синхронизировать время. Если время на сервере и клиенте будет отличаться, то существует большая вероятность того, что они вообще не смогут соединиться друг с другом. В свою очередь sudo может начать просить пароль после каждого действия, думая, что таймаут авторизации давно истёк. И кто знает, с чем нам ещё предстоит столкнуться? Перестрахуемся.
Чтобы синхронизировать время с серверами через Интернет по протоколу NTP, нам нужно установить недостающие пакеты. Можно воспользоваться arch-root, но но мы обойдёмся ключами, которые сообщат новое место для установки менеджеру пакетов:
Настроим получение точного времени с российских серверов:
Нам достаточно синхронизировать время один раз при загрузке. Раньше мы бы записали запуск службы точного времени в файл rc.local, но сейчас появился менеджер системы и служб systemd, который старается запускать службы (в оригинале они называются unit) параллельно для уменьшения времени загрузки системы. Естественно, что работоспособность одной службы может зависеть от функционирования другой. Например, нам бесполезно пытаться синхронизировать время через Интернет до того, как у нас на компьютере заработает сеть. Чтобы описать все эти взаимосвязи, уже недостаточно простого указания имени исполняемого файла, поэтому запуск посредством systemd стал весьма нетривиальным занятием. Для этой цели были созданы специальные файлы с расширением «.service». В них указаны зависимости, имена исполняемых файлов и другие параметры, которые нужно учитывать для успешного запуска. В частности, для управления этапами загрузки в systemd используются цели (target), которые по возлагаемым на них задачам схожи с уровнями запуска (runlevel). Подробности читайте в вики.
К радости новичков, вместе с пакетом ntp поставляется уже готовый ntpdate.service. Все файлы, описывающие запуск служб, находятся в папке $root/usr/lib/systemd/system/, и их можно открыть в любом текстовом редакторе или посмотреть обычным образом. Вот, например, $root/usr/lib/systemd/system/ntpdate.service:
В блоке [Unit] в строке Description указывается краткое описание службы, и при каких условиях она должна быть запущена (в данном случае, после запуска сети, но до перед запуском сервера NTP, который мы вообще не планируем запускать). Запрос точного времени происходит единственный раз во время загрузки, и за это отвечает строка Type=oneshot из блока [Service]. В этом же блоке в строке ExecStart указаны действия, которые необходимо выполнить для запуска сервиса. В блоке [Install] в нашем случае указано, что запуск нашей службы необходим для достижения цели multi-user.target. Рекомендуется использовать такое же содержание блока [Install] для запуска самодельных служб.
В качестве первого практического примера мы немного расширим функциональность ntpdate.service, попросив его дополнительно исправлять время на аппаратных часах. Если после этого, на этом же самом компьютере вы загрузите Windows, то увидите время по Гринвичу, так что не пугайтесь.
Изменение стандартного поведения любой службы systemd производится следующим образом: сначала в папке /etc/systemd/system/ создается новый каталог с полным именем службы и расширением «.d», куда добавляется файл с произвольным именем и расширением «.conf», и уже там производятся нужные модификации. Приступим:
Здесь просто говорится о том, что во сразу после запуска службы выполнить команду «/usr/bin/hwclock -w», которая переведёт аппаратные часы.
Добавляем службу ntpdate в автозагрузку (синтаксис стандартен для всех служб):
Как видите, в каталоге multi-user.target.wants создалась обыкновенная символическая ссылка на файл ntpdate.service, а упоминание о цели multi-user.target мы видели в блоке [Install] этого самого файла. Получается для того, чтобы система достигла цели multi-user.target, должны быть запущены все службы из каталога multi-user.target.wants.
Теперь устанавливаем пакет SSH аналогичным способом (в ArchLinux он называется openssh):
Но на этот раз для автозапуска мы будем использовать сокет, чтобы сервер SSH стартовал только после поступления запроса на подключение, а не висел мёртвым грузом в оперативной памяти:
Мы не поменяли стандартный 22-й порт и не включили принудительное использование Protocol 2 — пусть это останется на моей совести.
Забегая вперед или знакомимся с обработчиками (hooks)
Чтобы мы могли не глядя подключиться к нашему будущему серверу, нам нужно знать его IP адрес. Будет намного проще, если этот адрес — статический. Обычные способы, о которых говорится в вики, нам не подходят. Проблема в том, что сетевые адаптеры в современном мире именуются согласно своему физическому расположению на материнской плате. Например, имя устройства enp0s3 означает, что это сетевой адаптер ethernet, который расположен на нулевой шине PCI в третьем слоте (подробности здесь). Сделано так для того, чтобы при замене одного адаптера другим, имя устройства в системе не поменялось. Такое поведение нам не желательно, т. к. на разных моделях материнских плат положение сетевой карты может быть разным, и когда мы попытаемся перенести наш загрузочный сервер из VirtualBox на реальное железо, нам скорее всего придётся загружаться с клавиатурой и монитором, чтобы правильно настроить сеть. Нам нужно, чтобы имя сетевого адаптера стало более предсказуемым, например, eth0 (это место зарезервировано смайликом).
Устанавливаем пакет mkinitcpio-nfs-utils, и у нас появится обработчик (hook) под названием «net»:
По-умолчанию, все файлы обработчика попадают в /usr/lib/initcpio/. Обычно это парные файлы с одинаковым названием, один из которых окажется в подкаталоге install, а другой — в hooks. Сами файлы являются обычными скриптами. Файл из папки hooks обычно попадает внутрь файла initramfs (позже мы о нём всё узнаем) и выполняется при загрузке системы. Второй файл из пары попадает в папку install. Внутри него есть функция build(), в которой находятся сведения о том, какие действия нужно выполнить во время генерации файла initramfs, а также функция help() с описанием того, для чего предназначен данный обработчик. Если запутались, то просто читайте дальше, и всё сказанное в этом абзаце встанет на свои места.
Папка initcpio также присутствует в каталоге /etc, и в ней тоже есть подкаталоги install и hooks. При этом она имеет безусловный приоритет над /usr/lib/initcpio, т. е. если в обеих папках окажутся файлы с одинаковыми названиями, то при генерации initcpio будут использоваться файлы из /etc/initcpio, а не из /usr/lib/initcpio.
Нам нужно немного поменять функциональность обработчика net, поэтому просто скопируем файлы из /usr/lib/initcpio в /etc/initcpio:
Приводим файл hooks/net к следующему виду:
Теперь откроем файл $root/etc/initcpio/install/net и увидим, что в функции help() отлично написано, что из себя должна представлять переменная «ip»:
Останется просто установить значение переменной, чтобы задать статический IP адрес и название сетевого устройства, например так «192.168.1.100::192.168.1.1:255.255.255.0::eth0:none» (здесь и далее используйте подходящие для себя настройки сети). В следующем разделе вы узнаете, где именно задаётся значение.
А пока уберём всё лишнее из файла $root/etc/initcpio/install/net. Оставляем загрузку модулей сетевых устройств, программу ipconfig, которую использовали выше, и, естественно, сам скрипт из папки hooks, выполняющий всю основную работу. Получится примерно следующее:
Когда во время загрузки менеджер устройств systemd-udevd попробует переименовать наше сетевое устройство в привычное ему predictable network interface name, например, в enp0s3, то у него ничего не получится. Почему — читайте дальше.
Как происходит загрузка системы
Для простоты рассмотрим обычные BIOS. После включения и инициализации, BIOS начинает по порядку идти по списку загрузочных устройств, пока не найдет загрузчик, которому передаст дальнейшее управление загрузкой.
Как раз такой загрузчик мы записали в MBR нашего накопителя. Мы использовали GRUB, в настройках которого (файл grub.cfg) указали, что корневой раздел находится на диске с меткой HABR. Вот эта строка целиком:
Здесь упомянут файл vmlinuz-linux, который является ядром системы, а указатель на корневую систему является его параметром. Мы просим искать корневую систему на устройстве с меткой HABR. Здесь также мог бы быть уникальный для каждого накопителя UUID, но в этом случае при переносе системы на другой диск нам несомненно пришлось бы его изменить. Если бы мы указали положение корневой системы привычным для линуксоидов образом: /dev/sda1, то не смогли бы загрузиться с USB накопителя, т. к. это имя USB накопитель бы получил только будучи единственным накопителем в компьютере. Маловероятно, что в компьютере окажется ещё один накопитель с меткой HABR, но не стоит об этом забывать.
Здесь же устанавливается значение глобальной переменной «ip» для нашего обработчика «net» (не забудьте поменять адреса на используемые в вашей сети):
В соседней строке есть упоминание файла initramfs, с которым я обещал разобраться:
Далее при загрузке происходит следующее: загрузчик GRUB получает файлы vmlinuz и initramfs, сообщает им, где искать корневую файловую систему и передаёт им управление дальнейшей загрузкой.
Название initramfs образовано от initial ram file system. Это на самом деле обычная корневая файловая система Linux, упакованная в архив. Она разворачивается в оперативной памяти во время загрузки и предназначена для того, чтобы найти и подготовить корневую файловую систему нашего linux, который мы пытаемся загрузить в итоге. В initramfs есть всё необходимое для этих целей, ведь это настоящий «маленький линукс», который может выполнять многие обычные команды. Его возможности расширяются с помощью обработчиков (hooks), которые помогают сформировать новую корневую файловую систему нашего linux.
После того, как программы из initramfs выполнят свою работу, управление дальнейшей загрузкой передается процессу init подготовленной корневой файловой системы. В качестве процесса init Archlinux использует systemd.
Менеджер устройств systemd-udevd является частью systemd. Он, как и его старший брат, старается обнаруживать и настраивать все устройства в системе параллельно. Он начинает свою работу одним из первых, но уже после того, как наш обработчик net инициализирует сетевую карту ещё на на этапе работы initramfs. Таким образом, systemd-udevd не может переименовать используемое устройство, и имя eth0 сохраняется за сетевой картой в течение всего времени работы.
Готовим initramfs
Для создания файла initramfs используется программа mkinitcpio, которая входит в пакет base, установленный нами в самом начале. Настройки находятся в файле $root/etc/mkinitcpio.conf, а пресеты лежат в папке /etc/mkinitcpio.d. От нас требуется сделать initramfs таким, чтобы он смог найти и подготовить корневую файловую систему, с которой впоследствии начнёт работать systemd. Нам совершенно необязательно учитывать все возможные варианты, достаточно только самого необходимого, чтобы не увеличивать размеры файла initramfs. Более подробная информация находится здесь wiki.archlinux.org/index.php/Mkinitcpio
Обязательно убираем обработчик autodetect. Он проверяет устройства установленные в данном конкретном компьютере, и оставляет только необходимые для них модули в initramfs. Нам этого не нужно, поскольку мы изначально рассматриваем возможность дальнейшего переноса системы на другой компьютер, который аппаратно скорее всего будет отличаться от используемой виртуальной машины.
Достаточный для наших целей список обработчиков включая созданный нами net выглядит следующим образом:
вставляем эту строку в файл mkinitcpio.conf, а старую комментируем:
На базе стандартного пресета linux создаем свой пресет habr:
И приводим его к такому виду:
Нам не нужна ветка ‘fallback’, которая удаляет из обработчиков autodetect, ведь мы его уже сами убрали, и нам не нужно дважды генерировать одинаковый файл initramfs с разными названиями.
Генерируем новый initramfs с помощью пресета habr:
Пишем службу обновления DNS для использования с systemd
Наша сетевая карта получает все настройки для того, чтобы работала сеть и Интернет. Но названия сайтов переводиться в IP адреса не будут, т. к. наша система не знает, какие серверы DNS следует для этого использовать. Напишем собственную службу для этих целей, которую при загрузке будет запускать systemd. А чтобы узнать что-то новое и не заскучать от однообразия, передадим информацию о названии сетевого устройства в качестве параметра, а список DNS серверов сохраним во внешнем файле.
Обновлением информации о DNS серверах занимается resolvconf. Нам идеально подходит синтакскис:
В импортируемом здесь файле IP адрес каждого сервера указывается в новой строке после ключевого слова nameserver. Можно указать сколько угодно серверов, но использоваться будут только первые 3 из них. В качестве примера воспользуемся серверами Яндекс. В этом случае файл, передаваемый в resolvconf, должен выглядеть вот так:
Нам нужно получать информацию о DNS серверах до того, как система будет уверена, что сеть полностью работает, т. е. до достижения цели network.target. Будем считать, что информацию о серверах нам достаточно обновлять один раз во время загрузки. И стандартно скажем, что нашу службу требует цель multi-user.target. Создаём файл запуска службы в каталоге со следующим содержанием:
В строке ExecStart мы выполняем команду echo, на лету генерирующую файл со списком серверов, который через конвейер передаем resolvconf. Вообще, в строке ExecStart нельзя использовать несколько команд и тем более нельзя использовать конвейеры, но мы снова всех обманули, передав эти команды в качестве параметра -c для /usr/bin/sh.
Обратите внимание, что в названии файла update_dns@.service используется символ @, после которого можно указать переменную, и она попадёт внутрь файла, заменив собой «%i». Таким образом строка EnvironmentFile=/etc/default/dns@%i превратится в EnvironmentFile=/etc/default/dns@eth0 — именно это название внешнего файла, мы будем использовать для хранения значения переменных DNS0 и DNS1. Синтаксис как в обычных скриптах: «название переменной=значение переменной». Создадим файл:
И добавим следующие строки:
Теперь добавляем службу в автозагрузку не забывая указать имя сетевой карты после @:
Только что мы написали универсальный файл, обеспечивающий запуск службы. Универсальность заключается в том что, если в нашей системе окажется несколько сетевых адаптеров, то для каждого из них мы сможем указать свои собственные DNS серверы. Нужно будет просто подготовить набор файлов со списком серверов для каждого из устройств и запускать службу для каждого адаптера в отдельности указывая его имя после @.
Перед первым запуском
На этом первоначальная настройка закончена. Нам нужно загрузить установленный ArchLinux с внутреннего накопителя, чтобы произведённые нами изменения вступили в силу.
Отключаем готовую корневую систему:
И выключаем виртуальную машину:
Теперь можно отключить загрузочный образ из CD-ROM или достать флешку, после этого включаем машину и убеждаемся, что всё работает.
Источник