Архитектура многопроцессорных систем windows

Архитектура windows

Цель работы: изучение архитектуры операционной системы Windows

Приложение (application) Windows — это совокупность исполняемых программ и вспомогательных файлов. Например, Microsoft Word представляет собой одно из популярных приложений Windows. Процессом называется исполняемый экземпляр приложения. Заметим, что в большинстве случаев пользователь может запускать несколько экземпляров (копий) одного и того же приложения одновременно. Каждый исполняемый экземпляр — это отдельный процесс со своей собственной областью памяти.

Если быть более точным, процессом (process) называется исполняемый экземпляр (running instance) приложения и комплект ресурсов, отводящийся данному исполняемому приложению.

Поток (thread) — это внутренняя составляющая процесса, которой операционная система выделяет процессорное время для выполнения кода. Именно потоки исполняют программный код, а не процессы. Каждый процесс должен иметь как минимум один поток. Основное назначение потоков — дать процессу возможность поддерживать несколько ветвей управления, то есть выполнять больше действий одновременно. В многопроцессорной конфигурации (компьютер с несколькими процессорами) Windows NT (но не Windows 9x) может распределять потоки по процессорам, реально обеспечивая параллельную обработку. В однопроцессорной конфигурации процессор должен выделять кванты времени (time slices) каждому исполняемому в данный момент потоку.

На нижеприведенном рисунке представлена в обобщенном виде архитектура Windows NT. Рассмотрим некоторые из изображенных пунктов.

Режим ядра и пользовательский режим

Микропроцессор Pentium имеет четыре уровня привилегий (privilege levels), известных также как кольца (rings), которые управляют, например, доступом к памяти, возможностью использовать некоторые критичные команды процессора (такие как команды, связанные с защитой) и т. д. Каждый поток выполняется на одном из этих уровней привилегий. Кольцо 0 — наиболее привилегированный уровень, с полным доступом ко всей памяти и ко всем командам процессора. Кольцо 3 — наименее привилегированный уровень.

Для обеспечения совместимости с системами на базе процессоров, отличных от тех, что выпускает компания Intel, Windows поддерживает только два уровня привилегий — кольца 0 и 3. Если поток работает в кольце 0, говорят, что он выполняется в режиме ядра (kernel mode). Если поток выполняется в кольце 3, говорят, что он работает в пользовательском режиме (user mode). Низкоуровневый код операционной системы действует в режиме ядра, тогда как пользовательские приложения выполняются в основном в пользовательском режиме.

Прикладной поток может переключаться из пользовательского режима в режим ядра при вызове некоторых API-функций, которые требуют более высокого уровня привилегий, например, связанных с доступом к файлам или с выполнением функций, ориентированных на графические операции. В действительности некоторые пользовательские потоки могут работать в режиме ядра даже больше времени, чем в пользовательском режиме.

Но как только завершается выполнение той части кода, которая относится к режиму ядра, пользовательский поток автоматически переключается обратно в пользовательский режим. Такой подход лишает возможности писать код, предназначенный для работы в режиме ядра, программист может только вызывать выполняющиеся в режиме ядра системные функции (system functions). При работе с Windows NT можно определить, когда поток выполняется в пользователъском режиме, а когда — в режиме ядра. Для этого используется утилита Performance Monitor (Системный монитор) из пункта Administrative Tools (Администрирование) меню Start. (Пуск).

Интересно, что драйверы устройств работают в режиме ядра. Это обстоятельство имеет два следствия. Во-первых, в отличие от неправильно выполняющегося приложения, неправильно работающий драйвер устройства может нарушить работу всей системы, так как он имеет доступ и ко всему системному коду и ко всей памяти. Во-вторых, прикладной программист может получить доступ к защищенным ресурсам, написав драйвер псевдоустройства (fake device), хотя это и нелегкая задача.

Термин сервис (service) имеет в среде Windows множество значений. Ниже представлены некоторые из них, имеющие отношение к рассматриваемой теме:

    Сервис АРI — функция или подпрограмма API, которая реализует некоторое действие (сервис) операционной системы, такое как создание файла или работа с графикой (рисование линий или окружностей). Например, функция API CreaTEProcess используется в Windows для создания нового процесса; системный сервис — недокументированная (undocumented) функция, которая может вызываться из пользовательского режима. Эти функции часто используются функциями Win32 API для предоставления низкоуровневых сервисов. Например, функция API CreateProcess для реального создания процесса вызывает системный сервис NTCreateProcess; внутренний (internal) сервис — функция или подпрограмма, которая может вызываться только из кода, выполняемого в режиме ядра. Эти функции относятся к низкоуровневой части кода Windows: к исполнительной системе Windows NT, к ядру или к слою абстрагирования от аппаратуры (HAL).
Читайте также:  Xerox 3220 драйвера для mac os

Системные процессы (system processes) — это особые процессы, обслуживающие операционную систему. В ОС Windows постоянно задействованы следующие системные процессы (все они, кроме процесса system, выполняются в пользовательском режиме):

· процесс Idle, который состоит из одного потока, управляющего временем простоя процессора;

· процесс System — специальный процесс, выполняющийся только в режиме ядра. Его потоки называются системными потоками (system threads);

· процесс Session Manager (диспетчер сеансов) — SMSS. EXE;

· подсистема Win32 — CSRSS. EXE;

· процесс регистрации в системе — WinLogon (WINLOGON. EXE).

Можно убедиться в том, что эти системные процессы действительно выполняются в системе, посмотрев на вкладку Processes (Процессы) программы Task Manager (Диспетчер задач).

Рассмотрим некоторые из этих системных процессов.

Процесс Session Manager

Процесс Session Manager (SMSS. EXE) — один из первых процессов, создаваемых операционной системой в процессе загрузки. Он выполняет важные функции инициализации, такие как создание переменных окружения системы; задание имен устройств MS DOS, например, LPT1 и СОМ1; загрузка той части подсистемы Win32, которая относится к режиму ядра; запуск процесса регистрации в системе WinLogon.

Этот системный процесс управляет входом пользователей в систему и выходом из нее. Вызывается специальной комбинацией клавиш Windows Ctrl+Alt+Delete. WinLogon отвечает за загрузку оболочки Windows (обычно это Windows Explorer).

Процесс system состоит из системных потоков (system threads), являющихся потоками режима ядра. Windows и многие драйверы устройств создают потоки прoцecca system для различных целей. Например, диспетчер памяти формирует системные потоки для решения задач управления виртуальной памятью, диспетчер кэша использует системные потоки для управления кэш-памятью, а драйвер гибкого диска — для контроля над гибкими дисками.

Подсистема Win32 — основной предмет нашего рассмотрения. Она является разновидностью подсистемы среды (environment subsystem). Другие подсистемы среды Windows (не показаны на рисунке) включают POSIX и OS/2. POSIX является сокращением термина «переносимая операционная система па базе UNIX» (portable operating system based on UNIX) и реализует ограниченную поддержку операционной системы UNIX.

Назначение подсистемы среды — служить интерфейсом между пользовательскими приложениями и соответствующей частью исполнительной системы Windows. Каждая подсистема имеет свои функциональные возможности на базе единой исполнительной системы Windows. Любой выполняемый файл неразрывно связан с одной из этих подсистем. Подсистема Win32 содержит Win32 API в виде набора DLL, таких, как KERNEL32.DLL, GDI32.DLL и USER32.DLL.

В Windows NT Microsoft перенесла часть подсистемы Win32 из пользовательского режима в режим ядра. В частности, драйвер устройства режима ядра WIN32K. SYS, который управляет отображением окон, выводом на экран, вводом данных с клавиатуры или при помощи мыши и передачей сообщений. Он включает также библиотеку интерфейсов графических устройств (Graphical Device Interface library – GDL. DLL), используемую для создания графических объектов и текста.

Вызов Win32 API-функций

Когда приложение вызывает API-функцию из подсистемы Win32, может произойти одно из нескольких событий:

· если DLL подсистемы (например, USER32.DLL), экспортирующая данную API-функцию, содержит весь код, необходимый для выполнения функции то функция выполняется и возвращает результат;

· API-функции, вызываемой приложением, может потребоваться вызвать для выполнения вспомогательных действий дополнительный модуль, принадлежащий подсистеме Win32 (но не той DLL, которая экспортирует данную функцию);

· API-функции, вызываемой приложением, могут понадобиться услуги недокументированного системного сервиса. Например, чтобы создать новый процесс, API-функция CreateProcess вызывает недокументированный системный сервис NTCreateProcess для реального создания данного процесса. Это делается с помощью функций библиотеки NTDLL. DLL, которая помогает осуществлять переход из пользовательского режима в режим ядра.

Исполнительная система Windows

Сервисы исполнительной системы Windows составляют низкоуровневую часть Windows NT режима ядра, включенную в файл NTOSKRNL. EXE.

Cервисы исполнительной системы делят на две группы: исполнительную систему (executive), относящуюся к верхнему уровню, и ядро (kernel). Ядро — это самый нижний уровень операционной системы, реализующий наиболее фундаментальные сервисы, такие как:

· синхронизацию процессоров в многопроцессорной системе;

· создание объектов ядра.

Ниже приведены некоторые наиболее важные составляющие исполнительной системы:

    Диспетчер процессов и потоков создает и завершает и процессы, и потоки, используя сервисы низкоуровневого ядра; Диспетчер виртуальной памяти реализует механизм виртуальной памяти; Диспетчер ввода/вывода реализует аппаратно-независимый ввод/вывод и взаимодействует с драйверами устройств; Диспетчер КЭШа управляет кэшированием диска; Диспетчер объектов создает объекты исполнительной системы Windows и управляет ими. Windows использует объекты для представления разнообразных ресурсов, таких как процессы и потоки; Библиотеки времени выполнения Содержат такие функции, как обработки строк и арифметические функции.
Читайте также:  Linux запуск sublime text

Уровень абстрагирования от аппаратуры (HAL)

Уровень абстрагирования от аппаратуры (HAL) — это библиотека режима ядра (HAL. DLL), которая реализует низкоуровневый интерфейс с аппаратурой. Компоненты Windows и драйверы устройств от других компаний взаимодействуют с аппаратурой посредством HAL. Существует много версий HAL для различных аппаратных платформ. Подходящий уровень выбирается в процессе установки Windows.

Объекты и их дескрипторы

Архитектура Windows базируется на использовании множества различных объектов. Объект ядра (kernel object) — это структура данных, доступ к членам которой, имеет только ядро Windows. Далее приведены примеры объектов ядра:

    объект Process представляет процесс; объект Thread определяет поток; объект File представляет открытый файл; объект File-mapping представляет отображаемый в память файл (memory-mapped file), то есть файл, содержимое которого отображено непосредственно на виртуальное адресное пространство и используется как физическая память; объект Pipe используется для обмена данными между процессами; объект Event является объектом синхронизации потоков, сигнализирующим о завершении операции; объект Mutex представляет собой объект синхронизации потоков, который может использоваться несколькими процессами; объект Semaphore используется для того, чтобы учитывать ресурсы и сигнализировать потоку о доступности ресурса на данный момент.

Кроме объектов ядра, существуют также пользовательские объекты и объекты GDI, такие как меню, окна, шрифты, кисти и курсоры мыши.

Одной из характеристик любого объекта является дескриптор, который используется для идентификации этого объекта.

Хотя к объектам ядра нельзя получить непосредственный доступ из пользовательского режима, в Windows API есть функции, которые можно вызывать из данного режима для управления этими объектами. Это своего рода инкапсуляция (encapsulation), защищающая объекты от непредусмотренных или неразрешенные действий. Когда создается объект ядра посредством вызова соответствующей АРI функции (CreateProcess, GreateThread, CreateFile и GreateFileMapping), функция возвращает дескриптор вновь созданного объекта. Такой дескриптор может быть передан другой API-функции для того, чтобы она могла управлять данным объектом.

В общем, дескриптор объекта является зависимым от процесса (process-specific). Это означает, что он действует только в пределах данного процесса. Некоторые идентификаторы, такие как ID процесса, наоборот, являются идентификаторами системного уровня. Другими словами, область их действия — все процессы системы.

Объект ядра принадлежит ядру Windows, а не процессу, создавшему этот объект (или любому другому процессу). Объекты могут использоваться совместно многими процессами и применяться разными способами. У каждого процесса, который работает с объектом, есть свой собственный, действующий в пределах данного процесса, дескриптор этого объекта.

С учетом этого ядро должно поддерживать Подсчет используемости (usage count) каждого объекта. Ядро уничтожает объект тогда, когда его используемость становится равной нулю, но не раньше. Таким образом, процесс, создавший данный объект, может закрыть (close) его дескриптор (посредством вызова API-функции CloseHandle), но объект не будет уничтожен, если какой-то другой процесс продолжает его использовать (имеет его дескриптор).

Отметим также, что у объектов ядра есть атрибуты защиты, которые можно использовать для ограничения доступа к данным объектам. Фактически это одно из основных свойств, отличающих объекты ядра от пользовательских объектов и объектов GDI.

Совместное использование объектов несколькими процессами

Существует несколько способов совместного использования объекта несколькими процессами.

Когда процесс (а точнее поток этого процесса) создает объект ядра, он может указать, что дескриптор этого объекта наследуется (inheritable) порожденными (child) процессами, которые данный родительский процесс создает впоследствии. В этой случае дескрипторы родительского и порожденного процессов одинаковы.

Функция DuplicateHandle определяется следующим образом:

Архитектура вычислительных систем. SMP и MPP-архитектуры. Гибридная архитектура (NUMA). Организация когерентности многоуровневой иерархической памяти

SMP-архитектура

SMP (symmetric multiprocessing) – симметричная многопроцессорная архитектура . Главной особенностью систем с архитектурой SMP является наличие общей физической памяти , разделяемой всеми процессорами.

Память служит, в частности, для передачи сообщений между процессорами, при этом все вычислительные устройства при обращении к ней имеют равные права и одну и ту же адресацию для всех ячеек памяти. Поэтому SMP — архитектура называется симметричной. Последнее обстоятельство позволяет очень эффективно обмениваться данными с другими вычислительными устройствами. SMP -система строится на основе высокоскоростной системной шины ( SGI PowerPath, Sun Gigaplane, DEC TurboLaser), к слотам которой подключаются функциональные блоки типов: процессоры (ЦП), подсистема ввода/вывода ( I/O ) и т. п. Для подсоединения к модулям I/O используются уже более медленные шины ( PCI , VME64 ). Наиболее известными SMP -системами являются SMP -cерверы и рабочие станции на базе процессоров Intel ( IBM , HP, Compaq, Dell, ALR, Unisys, DG, Fujitsu и др.) Вся система работает под управлением единой ОС (обычно UNIX-подобной, но для Intel-платформ поддерживается Windows NT). ОС автоматически (в процессе работы) распределяет процессы по процессорам, но иногда возможна и явная привязка.

Читайте также:  Как сделать лайф линукс usb

Основные преимущества SMP -систем:

  • простота и универсальность для программирования. Архитектура SMP не накладывает ограничений на модель программирования, используемую при создании приложения: обычно используется модель параллельных ветвей, когда все процессоры работают независимо друг от друга. Однако можно реализовать и модели, использующие межпроцессорный обмен. Использование общей памяти увеличивает скорость такого обмена, пользователь также имеет доступ сразу ко всему объему памяти. Для SMP-систем существуют довольно эффективные средства автоматического распараллеливания;
  • простота эксплуатации. Как правило, SMP-системы используют систему кондиционирования, основанную на воздушном охлаждении, что облегчает их техническое обслуживание;
  • относительно невысокая цена.
  • системы с общей памятью плохо масштабируются.

Этот существенный недостаток SMP -систем не позволяет считать их по -настоящему перспективными. Причиной плохой масштабируемости является то, что в данный момент шина способна обрабатывать только одну транзакцию, вследствие чего возникают проблемы разрешения конфликтов при одновременном обращении нескольких процессоров к одним и тем же областям общей физической памяти . Вычислительные элементы начинают друг другу мешать. Когда произойдет такой конфликт , зависит от скорости связи и от количества вычислительных элементов. В настоящее время конфликты могут происходить при наличии 8-24 процессоров. Кроме того, системная шина имеет ограниченную (хоть и высокую) пропускную способность (ПС) и ограниченное число слотов. Все это очевидно препятствует увеличению производительности при увеличении числа процессоров и числа подключаемых пользователей. В реальных системах можно задействовать не более 32 процессоров. Для построения масштабируемых систем на базе SMP используются кластерные или NUMA -архитектуры. При работе с SMP -системами используют так называемую парадигму программирования с разделяемой памятью (shared memory paradigm ).

MPP-архитектура

MPP (massive parallel processing) – массивно-параллельная архитектура . Главная особенность такой архитектуры состоит в том, что память физически разделена. В этом случае система строится из отдельных модулей, содержащих процессор, локальный банк операционной памяти (ОП), коммуникационные процессоры (рутеры) или сетевые адаптеры , иногда – жесткие диски и/или другие устройства ввода/вывода. По сути, такие модули представляют собой полнофункциональные компьютеры (см. рис.3.2). Доступ к банку ОП из данного модуля имеют только процессоры (ЦП) из этого же модуля. Модули соединяются специальными коммуникационными каналами. Пользователь может определить логический номер процессора, к которому он подключен, и организовать обмен сообщениями с другими процессорами. Используются два варианта работы операционной системы (ОС) на машинах MPP -архитектуры. В одном полноценная операционная система (ОС) работает только на управляющей машине (front-end), на каждом отдельном модуле функционирует сильно урезанный вариант ОС, обеспечивающий работу только расположенной в нем ветви параллельного приложения. Во втором варианте на каждом модуле работает полноценная UNIX-подобная ОС, устанавливаемая отдельно.

Главным преимуществом систем с раздельной памятью является хорошая масштабируемость : в отличие от SMP -систем, в машинах с раздельной памятью каждый процессор имеет доступ только к своей локальной памяти , в связи с чем не возникает необходимости в потактовой синхронизации процессоров. Практически все рекорды по производительности на сегодня устанавливаются на машинах именно такой архитектуры, состоящих из нескольких тысяч процессоров ( ASCI Red , ASCI Blue Pacific).

  • отсутствие общей памяти заметно снижает скорость межпроцессорного обмена , поскольку нет общей среды для хранения данных, предназначенных для обмена между процессорами. Требуется специальная техника программирования для реализации обмена сообщениями между процессорами;
  • каждый процессор может использовать только ограниченный объем локального банка памяти;
  • вследствие указанных архитектурных недостатков требуются значительные усилия для того, чтобы максимально использовать системные ресурсы. Именно этим определяется высокая цена программного обеспечения для массивно-параллельных систем с раздельной памятью.

Системами с раздельной памятью являются суперкомпьютеры МВС-1000, IBM RS/6000 SP , SGI /CRAY T3E, системы ASCI , Hitachi SR8000, системы Parsytec.

Машины последней серии CRAY T3E от SGI , основанные на базе процессоров Dec Alpha 21164 с пиковой производительностью 1200 Мфлопс (CRAY T3E-1200), способны масштабироваться до 2048 процессоров.

При работе с MPP -системами используют так называемую Massive Passing Programming Paradigm – парадигму программирования с передачей данных ( MPI , PVM , BSPlib).

Оцените статью