Assembler 64 bit linux

Разработка на ассемблере в Linux

Вообще программирование на ассемблере в Linux мало распространено и занимаются им, разве что, фанаты ассемблера. Сегодня мы и поговорим о программировании на ассемблере и инструментарий. Что нам понадобится:

  • FASM. Берем на flatassembler.net версию для Linux
  • ald. Берем на ald.sourceforge.net
  • shed. Берем на shed.sourceforge.net
  • ld. Есть в большинстве дистрибутивов

Собственно каждый для себя выбирает инструменты сам. Я выбрал для себя эти.

Установка FASM

После загрузки архива с офф. сайта распакуем его:

tar zxvf fasm-1.69.11.tgz

В папке у нас будет бинарный файл fasm, который мы можем использовать для компиляции. Для удобства вы можете создать симлинк на него:

sudo ln -s /home/username/fasm/fasm /usr/local/bin

ald и shed устанавливаются не сложнее:

$ ./configure
$ make
# make install

В итоге у нас будет 3 полезных инструмента для программирования на ассемблере.

Системные вызовы

Как и большинство других операционных систем, Linux предоставляет т.н. API — набор полезных для программиста функций. В большинстве случаев вызов системной функции производится с помощью прерывания 80h. Следует отметить, что Linux используется fastcall-конвенция передачи параметров. Согласно ей параметры передаются через регистры (в windows, например, используется stdcall, где параметры передаются через стек). Номер вызываемой функции кладется в eax, а параметры в регистры:

Номер параметра / Регистр

1 / ebx
2 / ecx
3 / edx
4 / esi
5 / edi
6 / ebp

Как видите все не так сложно. Узнать номер системной функции, ее описание и параметры можно, хотя бы здесь. Возьмем, к примеру sys_exit . Как можно увидеть на той странице у нее есть один параметр — код возврата и она имеет порядковый номер 1. Таким образом мы можем вызвать ее следующим кодом:

mov eax, 1 ; 1 — номер системной функции
sub ebx, ebx ; Обнуляем регистр (можно было записать mov ebx, 0)
int 80h ; Вызываем прерывание 80h

Надеюсь, что все понятно.

Hello, World!

Ну что же. Писать мы ничего не будем, т.к. за нас все написано 🙂 В папке fasm/examples/elfexe есть файл hello.asm, в котором находится следующий код:

; fasm demonstration of writing simple ELF executable

format ELF executable 3
entry start

segment readable executable

mov eax,4
mov ebx,1
mov ecx,msg
mov edx,msg_size
int 0x80

mov eax,1
xor ebx,ebx
int 0x80

segment readable writeable

msg db ‘Hello world!’,0xA
msg_size = $-msg

Как видите здесь вызываются 2 системных функции — sys_write (с порядковым номером 4) и sys_exit . sys_write принимает 3 параметра — дескриптор потока вывода (1 — stdout), указатель на строку и размер строки. Сам номер функции, как уже говорилось, мы должны положить в eax. Функцию sys_exit мы уже разобрали. Скомпилировать это чудо можно так: fasm hello.asm (но не обязательно, т.к. там же, где лежит исходник, есть и бинарник).

Посмотрим, что внутри

Думаю, что самое время заглянуть в наш бинарник. Для начала воспользуемся шестнадцатеричным редактором, чтобы посмотреть что у нас получилось. Выполним команду:

Мы видим всю нашу программу, данные, elf-заголовок. Неплохо? Теперь мы посмотрим на нашу программу в отладчике. Наберем в консоли:

Нас должна поприветствовать строка с предложением ввести команду. Список команд вы можете узнать, набрав help или получить помощь по отдельной команде, набрав help command . Дизассемблировать нашу программу можно командой disassemble (или ее алиас — » d «). Вы увидете дизассемблированный листинг вашей программы. Слева — адрес, справа — сама команда, а посередине — опкод команды.

Получить дамп можно командой dump (странно, но ее нет в выводе команды help ).

Теперь попробуем поработать с командой next . Выполните ее и в ответ вам покажут значения регистров, установленные флаги, а так же адрес, опкод и дизассемблированную команду, которая должна выполниться следующей. Попробуйте выполнять команды и следите за изменением флагов и регистров. После вызова первого прерывания у вас на экране должна появиться надпись «Hello world!».

Читайте также:  Реестр windows 10 где находится копии

Целью данной статьи было показать основы программирования на ассемблере в linux, а не программирования на ассемблере в общем. Надеюсь, что вы подчерпнули для себя что-то полезное от сюда.

Источник

Записки программиста

Написание и отладка кода на ассемблере x86/x64 в Linux

17 августа 2016

Сегодня мы поговорим о программировании на ассемблере. Вопрос «зачем кому-то в третьем тысячелетии может прийти в голову писать что-то на ассемблере» раскрыт в заметке Зачем нужно знать всякие низкоуровневые вещи, поэтому здесь мы к нему возвращаться не будем. Отмечу, что в рамках поста мы сосредоточимся на вопросе компиляции и отладки программ на ассемблере. Сам же язык ассемблера заслуживает отдельного большого поста, а то и серии постов.

Если вы знаете ассемблер, то любая программа для вас — open source.

Введение

Существует два широко используемых ассемблерных синтаксиса — так называемые AT&T-синтаксис и Intel-синтаксис. Они не сильно друг от друга отличаются и легко переводятся один в другой. В мире Windows принято использовать синтаксис Intel. В мире *nix систем, наоборот, практически всегда используется синтаксис AT&T, а синтаксис Intel встречается крайне редко (например, он используется в утилите perf). Поскольку Windows, как известно, не существует, далее мы сосредоточимся на правильном AT&T-синтаксисе 🙂

Компиляторов ассемблера существует много. Мы будем использовать GNU Assembler (он же GAS, он же /usr/bin/as). Скорее всего, он уже есть вашей системе. К тому же, если вы пользуетесь GCC и собираетесь писать ассемблерные вставки в коде на C, то именно с этим ассемблером вам предстоит работать. Из достойных альтернатив GAS можно отметить NASM и FASM.

Наконец, язык ассемблера отличается в зависимости от архитектуры процессора. Пока что мы сосредоточимся на ассемблере для x86 (он же i386) и x64 (он же amd64), так как именно с этими архитектурами приходится чаще всего иметь дело. Впрочем, ARM тоже весьма распространен, главным образом на телефонах и планшетах. Еще из сравнительно популярного есть SPARC и PowerPC, но шансы столкнуться с ними весьма малы. Отмечу, что x86 и x64 можно было бы рассматривать отдельно, но эти архитектуры во многом похожи, поэтому я не вижу в этом большого смысла.

«Hello, world» на int 0 x80

Рассмотрим типичный «Hello, world» для архитектуры x86 и Linux:

.data
msg :
. ascii «Hello, world!\n»
. set len , . — msg

. globl _start
_start :
# write
mov $ 4 , % eax
mov $ 1 , % ebx
mov $msg , % ecx
mov $len , % edx
int $ 0x80

# exit
mov $ 1 , % eax
xor % ebx , % ebx
int $ 0x80

Коротко рассмотрим первые несколько действий, выполняемых программой: (1) программа начинает выполнение с метки _start, (2) в регистр eax кладется значение 4, (3) в регистр ebx помещается значение 1, (4) в регистр ecx кладется адрес строки, (5) в регистр edx кладется ее длина, (6) происходит прерывание 0 x80. Так в мире Linux традиционно происходит выполнение системных вызовов. Конкретно int 0 x80 считается устаревшим и медленным, но из соображений обратной совместимости он все еще работает. Далее мы рассмотрим и более новые механизмы.

Нетрудно догадаться, что eax — это номер системного вызова, а ebx, ecx и edx — его аргументы. Какой системный вызов имеет какой номер можно подсмотреть в файлах:

Следующая строчка из файла unistd_32.h:

… как бы намекает нам, что производится вызов write. В свою очередь, из man 2 write мы можем узнать, какие аргументы этот системный вызов принимает:

ssize_t write ( int fd , const void * buf , size_t count ) ;

То есть, рассмотренный код эквивалентен:

Затем аналогичным образом производится вызов:

Совсем не сложно!

В общем случае системный вызов через 0 x80 производится по следующим правилам. Регистру eax присваивается номер системного вызова из unistd_32.h. До шести аргументов помещаются в регистры ebx, ecx, edx, esi, edi и ebp. Возвращаемое значение помещается в регистр eax. Значения остальных регистров при возвращении из системного вызова остаются прежними.

Выполнение системного вызова через sysenter

Начиная с i586 появилась инструкция sysenter, специально предназначенная (чего нельзя сказать об инструкции int) для выполнения системных вызовов.

Читайте также:  Служба индексирования windows 10 нужна или нет

Рассмотрим пример использования ее на Linux:

.data
msg :
. ascii «Hello, world!\n»
len = . — msg

. text
. globl _start

_start :
# write
mov $ 4 , % eax
mov $ 1 , % ebx
mov $msg , % ecx
mov $len , % edx
push $write_ret
push % ecx
push % edx
push % ebp
mov % esp , % ebp
sysenter

write_ret :
# exit
mov $ 1 , % eax
xor % ebx , % ebx
push $exit_ret
push % ecx
push % edx
push % ebp
mov % esp , % ebp
sysenter

Сборка осуществляется аналогично сборке предыдущего примера.

Как видите, принцип тот же, что при использовании int 0 x80, только перед выполнением sysenter требуются поместить в стек адрес, по которому следует вернуть управление, а также совершить кое-какие дополнительные манипуляции с регистрами. Причины этого более подробно объясняются здесь.

Инструкция sysenter работает быстрее int 0 x80 и является предпочтительным способом совершения системных вызовов на x86.

Выполнение системного вызова через syscall

До сих пор речь шла о 32-х битных программах. На x64 выполнение системных вызовов осуществляется так:

.data
msg :
. ascii «Hello, world!\n»
. set len , . — msg

. globl _start
_start :
# write
mov $ 1 , % rax
mov $ 1 , % rdi
mov $msg , % rsi
mov $len , % rdx
syscall

# exit
mov $ 60 , % rax
xor % rdi , % rdi
syscall

Собирается программа таким образом:

Принцип все тот же, но есть важные отличия. Номера системных вызовов нужно брать из unistd_64.h, а не из unistd_32.h. Как видите, они совершенно другие. Так как это 64-х битный код, то и регистры мы используем 64-х битные. Номер системного вызова помещается в rax. До шести аргументов передается через регистры rdi, rsi, rdx, r10, r8 и r9. Возвращаемое значение помещается в регистр rax. Значения, сохраненные в остальных регистрах, при возвращении из системного вызова остаются прежними, за исключением регистров rcx и r11.

Интересно, что в программе под x64 можно одновременно использовать системные вызовы как через syscall, так и через int 0 x80.

Отладка ассемблерного кода в GDB

Статья была бы не полной, если бы мы не затронули вопрос отладки всего этого хозяйства. Так как мы все равно очень плотно сидим на GNU-стэке, в качестве отладчика воспользуемся GDB. По большому счету, отладка не сильно отличается от отладки обычного кода на C, но есть нюансы.

Например, вы не можете так просто взять и поставить брейкпоинт на процедуру main. Как минимум, у вас попросту нет отладочных символов с информацией о том, где эту main искать. Решение заключается в том, чтобы самостоятельно определить адрес точки входа в программу и поставить брейкпоинт на этот адрес:

Источник

MASM, TASM, FASM, NASM под Windows и Linux

В данной статье я хочу рассмотреть вопросы, которые могут возникнуть у человека, приступившего к изучению ассемблера, связанные с установкой различных трансляторов и трансляцией программ под Windows и Linux, а также указать ссылки на ресурсы и книги, посвященные изучению данной темы.

Используется для создания драйверов под Windows.

По ссылке переходим на сайт и скачиваем пакет (masm32v11r.zip). После инсталляции программы на диске создается папка с нашим пакетом C:\masm32. Создадим программу prog11.asm, которая ничего не делает.

Произведём ассемблирование (трансляцию) файла prog11.asm, используя ассемблер с сайта masm32.


Ключ /coff используется здесь для трансляции 32-битных программ.
Линковка производится командой link /subsystem:windows prog11.obj (link /subsystem:console prog11.obj)

Как сказано в Википедии

MASM — один из немногих инструментов разработки Microsoft, для которых не было отдельных 16- и 32-битных версий.

Также ассемблер версии 6. можно взять на сайте Кипа Ирвина kipirvine.com/asm, автора книги «Язык ассемблера для процессоров Intel».

Кстати, вот ссылка на личный сайт Владислава Пирогова, автора книги “Ассемблер для Windows”.

MASM с сайта Microsoft

Далее скачаем MASM (версия 8.0) с сайта Microsoft по ссылке. Загруженный файл носит название «MASMsetup.exe». При запуске этого файла получаем сообщение -«Microsoft Visual C++ Express Edition 2005 required».

Открываем этот файл архиватором (например 7zip). Внутри видим файл setup.exe, извлекаем его, открываем архиватором. Внутри видим два файла vc_masm.msi,vc_masm1.cab. Извлекаем файл vc_masm1.cab, открываем архиватором. Внутри видим файл FL_ml_exe_____X86.3643236F_FC70_11D3_A536_0090278A1BB8. Переименовываем его в файл fl_ml.exe, далее, произведём ассемблирование файла prog11.asm, используя ассемблер fl_ml.exe.

Читайте также:  Как сделать режим администратора windows 10

MASM в Visual Studio

Также MASM можно найти в папке с Visual Studio (у меня VS 10) вот здесь: C:\Program Files\Microsoft Visual Studio 10.0\VC\bin\ml.exe.

Для того, чтобы запустить на 32- или 64-разрядной системе и создавать программы, работающие как под 32-, так и под 64-разрядной Windows, подходит MASM32 (ml.exe, fl_ml.exe). Для того, чтобы работать на 32- и 64-разрядных системах и создавать программы, работающие под 64-разрядной Windows, но неработающие под 32-разрядной нужен ассемблер ml64.exe. Лежит в папке C:\Program Files\Microsoft Visual Studio 10.0\VC\bin\amd64 и вот здесь — C:\Program Files\Microsoft Visual Studio 10.0\VC\bin\x86_amd64.

Программный пакет компании Borland, предназначенный для разработки программ на языке ассемблера для архитектуры x86. В настоящее время Borland прекратила распространение своего ассемблера.

Скачать можно, например, здесь. Инсталлятора нет, просто извлекаем программу. Вот исходник из книги Питера Абеля (рис. 3.2) «Язык Ассемблера для IBM PC и программирования».

Выполним ассемблирование (трансляцию) файла abel32.asm.

Корректность работы программы можно проверить, произведя линковку (tlink.exe) объектного файла и запустив полученный файл в отладчике.

Как было сказано выше, MASM можно использовать для работы с 16-битными программами. Выполним ассемблирование (трансляцию) программы abel32.asm с помощью ассемблера MASM:

Ключ /coff здесь не используется.
Линковка производится файлом link16.exe

В статье Криса Касперски «Сравнение ассемблерных трансляторов» написано, что «FASM — неординарный и весьма самобытный, но увы, игрушечный ассемблер. Пригоден для мелких задач типа „hello, world“, вирусов, демок и прочих произведений хакерского творчества.»

Скачаем FASM с официального сайта. Инсталлятора нет, просто извлекаем программу. Откроем fasm editor — C:\fasm\fasmw.exe. В папке C:\fasm\EXAMPLES\HELLO есть файл HELLO.asm.

Откроем файл HELLO.asm из fasmw.exe. Изменим строку include ‘win32ax.inc’ на строку include ‘c:\fasm\INCLUDE\WIN32AX.INC’. Запускаем из меню Run → Run.

Вот ссылки на ресурсы, посвященные FASM:

Для того, использовать FASM в Linux (у меня Ubuntu), скачаем соответствующий дистрибутив (fasm-1.71.60.tgz), распакуем его, в папке у нас будет бинарный файл fasm, копируем этот файл в /usr/local/bin для того, чтобы можно было запускать его из консоли, как любую другую команду.Выполним ассемблирование программы hello.asm из папки fasm/examples/elfexe/hello.asm.

Корректность работы программы можно проверить в отладчике.

Nasm успешно конкурирует со стандартным в Linux- и многих других UNIX-системах ассемблером Gas.

Nasm в Linux можно установить его с помощью менеджера пакетов или из командной строки: в дистрибутиве Debian (Ubuntu) командой apt-get install nasm, в дистрибутивах Fedora, CentOS, RedHat командой yum install nasm.

Создадим программу, которая 5 раз выводит сообщение “Hello”. Пример взят из книги Андрея Викторовича Столярова “Программирование на языке ассемблера NASM для ОС UNIX”. Учебник, а также библиотека “stud_io.inc” есть на личном сайте автора.

Выполним ассемблирование и линковку и запустим файл hello.asm.

Для 64bit необходимо использовать команду nasm -f elf64 hello.asm

NASM для Windows

NASM для Windows можно установить, скачав соответствующий дистрибутив с соответствующего сайта.

Ассемблирование:
nasm -f bin имя_файла.asm -o имя_файла.com

Ссылки на ресурсы, посвященные Nasm:

Стандартный ассемблер практически во всех разновидностях UNIX, в том числе Linux и BSD. Свободная версия этого ассемблера называется GAS (GNU assembler). Позволяет транслировать программы с помощью компилятора GCC.

Из учебников удалось найти только книгу на английском «Programming from the ground up». На русском удалось найти только одну главу из книги С. Зубкова «Assembler для DOS, Windows и UNIX».

Возьмем пример программы, которая ничего не делает, с сайта. Создадим программу gas.s

Выполним ассемблирование (трансляцию), линковку и запуск программы:

Если в данной программе изменить _start на main, то можно выполнить ассемблирование (трансляцию) и линковку компилятором gcc.

Выполним ассемблирование (трансляцию), линковку и запуск программы:

Выводы: если вы изучаете программирование под Windows, то вы можете остановить свой выбор на Masm; Tasm больше не поддерживается, но для обучения по старым классическим учебникам подойдёт.
Под Linux Gas подойдет тем, кто использует GCC, а тем, кому не нравится синтаксис Gas, подойдёт Nasm.

Источник

Оцените статью