Управление памятью в Linux
Я думаю, что обычно у каждого пользователя Linux рано или поздно возникает следующий вопрос, задаваемый при администрировании рабочей станции или сервера — «Почему в Linux используется вся моя оперативная память, хотя никакой большой работы не выполняется? «. К нему сегодня я добавлю еще один вопрос, который, я уверен, обычен для многих системных администраторов Linux — «Почему команда free показывает память swap и почему у меня так много свободной оперативной памяти?», так что сегодняшнее мое исследование SwapCached, которое я представляю вам, может оказаться полезным, либо, по крайней мере, ознакомит, как я надеюсь, с информацией об управлении памятью в системе Linux.
В Linux применяется следующее основное правило: неиспользуемая страница оперативной памяти считается потерянной памятью. Оперативная память тратится не только для данных, используемых прикладными приложениями. В ней также хранятся данные для самого ядра и, самое главное, в эту память могут отображаться данные, хранящиеся на жестком диске, что используется для супер-быстрого к ним доступа — команда top указывает об этом в столбцах «buffers/cache» («буферы / кэш»), «disk cache» («дисковый кэш)» или «cached» («кэшировано»). Кэшированная память по сути свободна, поскольку ее можно быстро освободить в случае, если работающей (или только что запущенной) программе потребуется память.
Сохранение кэша означает, что если кому-нибудь еще раз потребуются те же самые данные, то есть большая вероятность, что они все еще будут находиться в кэше в оперативной памяти.
Поэтому первое, чем можно воспользоваться в вашей системе, это команда free , которая предоставит вам первоначальную информацию о том, как используется ваша оперативная память.
Ниже приведены данные, выдаваемые на моем старом ноутбуке с системой Xubuntu:
В строке -/+ buffers/cache показывается, сколько памяти используется и сколько памяти свободно с точки зрения ее использования в приложениях. В этом примере приложениями уже используется 972 Мб памяти и еще 534 МБ памяти могут быть использованы.
Вообще говоря, если используется хотя бы немного памяти подкачки swap, то использование памяти вообще не повлияет на производительность системы.
Но если вы хотите получить более подробную информацию о вашей памяти, то вы должны проверить файл /proc/meminfo; в моей системе Xubuntu с ядром 3.2.0-25-generic результат будет следующим:
Что означает MemTotal (Всего памяти) и MemFree (Свободная память), понятно для всех; остальные значения поясняются дальше:
Cached
Страничный кэш в системе Linux («Cached:» в meminfo) является в большинстве систем самым крупным потребителем памяти. Каждый раз, когда вы выполняете операцию чтения read () из файла, расположенного на диске, данные считываются в память и помещаются в страничный кэш. После того, как операция read() завершается, ядро может просто выбросить страницу памяти, так как она не используется. Однако, если вы второй раз выполняете операцию чтения той же самой части файла, данные будут считываться непосредственно из памяти и обращения к диску не будет. Это невероятно ускоряет работу и, поэтому, в Linux так интенсивно используется кэширование страниц: ставка делается на то, что если вы обратились к некоторой странице дисковой памяти, то вскоре вы обратитесь к ней снова.
dentry/inode caches
Каждый раз, когда вы в файловой системе выполняете операцию «ls’» (или любую другую операцию: open(), stat() и т.д.), ядру требуются данные, которые находятся на диске. Ядро анализирует эти данные, находящиеся на диске, и помещает его в некоторых структуры данных, независимые от файловой системы, с тем, чтобы они могли в различных файловых системах обрабатываться одним и тем же образом. Таким же самым образом, как кэширование страниц в приведенных выше примерах, ядро может после того, как будет завершена команда «ls», стереть эти структуры. Тем не менее, делается такое же предположение, как и раньше: если вы однажды считали эти данные, вы обязательно прочитаете их еще раз. Ядро хранит эту информацию в нескольких местах «кэша», которые называются кэш памятью dentry и inode. Кэш память dentries являются общей для всех файловых систем, но каждая файловая система имеет свой собственный кэш inodes.
Эта оперативная память является в meminfo составной частью «Slab:»
Вы можете просмотреть различную кэш память и узнать ее размеры с помощью следующей команды:
Buffer Cache
Кэш буфера («Buffers:» в meminfo) является близким родственником кэш памяти dentry/inode. Данные dentries и inodes, размещаемые в памяти, представляют собой описание структур на диске, но располагаются они по-разному. Это, возможно, связано с тем, что у нас в копии, расположенной в памяти, используется такая структура, как указатель, но на диске ее нет. Может также случиться, что на диске байты будут располагаться не в том порядке, как это нужно процессору.
Отображение памяти в команде top: VIRT, RES и SHR
Если вы запускаете команду top , то три строки будут описывать к использованию памяти. Вы должны понимать их значение с тем, чтобы понять, сколько памяти требуется вашему серверу.
VIRT является сокращением от virtual size of a process (виртуальный размер процесса) и представляет собой общий объем используемой памяти: памяти, отображаемой самой в себя (например, памяти видеокарты для сервера X), файлов на диске, которые отображаются в память (особенно это касается разделяемых библиотек) и памяти, разделяемой совместно с другими процессами. Значение VIRT указывает, сколько памяти в настоящий момент доступно программе.
RES является сокращением от resident size (размер резидентной части) и является точным указателем того, сколько в действительности потребляется процессом реальной физической памяти. (Что также соответствует значению, находящемуся непосредственно в колонке %MEM). Это значение практически всегда меньше, чем размер VIRT, т.к. большинство программ зависит от библиотеки C.
SHR показывает, какая величина от значения VIRT является в действительности разделяемой (по памяти или за счет использования библиотек). В случае библиотек, это не обязательно означает, что вся библиотека находится в резидентной памяти. Например, если программа использует только несколько функций библиотеки, то при отображении в память будет использована вся библиотека, что будет учтено в значениях VIRT и SHR, но, на самом деле, будет загружена часть библиотеки, содержащая используемые функции, и это будет учтено в значении RES.
Подкачка памяти — swap
Теперь мы видим некоторую информацию о нашей оперативной памяти, но что происходит, когда больше нет свободной оперативной памяти? Если у меня нет свободной памяти, а мне нужна память для страничного кэширования, кэширования inode или кэширования dentry, то где я ее могу получить?
Прежде всего, ядро пытается не допустить, чтобы у вас значение свободной оперативной памяти приближалось к 0 байтов. Это связано с тем, что когда нужно освободить оперативную память, то обычно требуется выделить немного больше памяти. Это обусловлено тем, что нашему ядру требуется своего рода «рабочее пространство» для выполнения своих действий, и поэтому, если размер свободной оперативной памяти становится равным нулю, ядро ничего больше сделать не сможет.
На основании общего объема оперативной памяти и соотношения ее различных типов (память high/low), ядро эвристически определяет то количество памяти в качестве рабочего пространства, при котором оно чувствует себя комфортно. Когда эта величина достигается, ядро начинает возвращать память для других различных задач, описанных выше. Ядро может вернуть себе память из любой из этих задач.
Однако, есть другой потребитель памяти, о котором мы, возможно, уже забыли: данные пользовательских приложений.
Как только ядро принимает решение, что ему не требуется получать память из каких-либо других источников, которые мы описывали ранее, оно запускает память подкачки swap. В ходе этого процесса оно получает данные пользовательских приложений и записывает их в специальное место (или места) на диске. Обратите внимание, что это происходит не только тогда, когда оперативная память близка к заполнению, ядро может принять решение перенести в память swap также данные, находящиеся в оперативной памяти, если они некоторое время не использовались (смотрите раздел «Подкачка памяти»).
По этой причине, даже система с огромным количеством оперативной памяти (даже если ее правильно настроить) может использовать память подкачки swap. Есть много страниц памяти, в которых находятся данные пользовательских приложений, но эти страницы используются редко. Все это является причиной, чтобы перенести их в раздел swap и использовать оперативную память для других целей.
Вы можете с помощью команды free проверить, используется ли память swap; для примера, который я уже использовал выше, в последней строке выдаваемых данных показывается информация о размере памяти swap:
Мы видим, что на этом компьютере уже используется 24 мегабайта памяти swap и для использования доступно еще 462 Мб.
Таким образом, сам факт использования памяти swap не является доказательством того, что в системе при ее текущей рабочей нагрузке слишком мало оперативной памяти. Лучший способ это определить с помощью команды vmstat — если вы увидите, что много страниц памяти swap перемещаются на диск и обратно, то это означает, что память swap используется активно, что система «пробуксовывает» или что ей нужна новая оперативная память поскольку это ускорит подкачку данных приложений.
На моем ноутбуке Gentoo, когда он простаивает, это выглядит следующим образом:
Обратите внимание на то, что в выходных данных команды free у вас есть только 2 значения, относящихся к памяти swap: free (свободная память) и used (используемая память), но для памяти подкачки swap также есть еще одно важное значение: Swap cache (показатель кэширования памяти подкачки).
Кэширование памяти swap (Swap Cach)
Кеширование памяти swap по сути очень похоже на страничное кеширование. Страница данных пользовательского приложения, записываемая на диск, очень похожа на страницу данных файла, находящуюся на диске. Каждый раз, когда страница считывается из файла подкачки («si» в vmstat), она помещается в кэш подкачки. Так же, как страничное кэширование, все это выполняется ядром. Ядро решает, нужно ли вернуть обратно на диск конкретную страницу. Если в этом возникнет необходимость, то можно проверить, есть ли копия этой страницы на диске и можно просто выбросить страницу из памяти. Это избавит нас от затрат на переписывание страницы на диск.
Кэширование памяти swap действительно полезно только когда мы читаем данные из памяти swap и никогда в нее не делаем записи. Если мы выполняем запись на страницу, то копия на диске не будет соответствовать копии, находящейся в памяти. Если это случится, то мы должны произвести запись страницы на диск точно также, как мы делали это первый раз. Несмотря на то, что затраты на сохранение всей страницы больше, чем затраты на запись небольшого измененного кусочка, система будет работать лучше.
Поэтому, чтобы узнать, что память swap действительно используется, мы должны из значения SwapUsed вычесть значение SwapCached, вы можете найти эту информацию в /proc/meminfo.
Подкачка памяти
Когда приложению нужна память, а вся оперативная память полностью занята, то в распоряжении ядра есть два способа освободить память: оно может либо уменьшить размер дискового кэша в оперативной памяти, убирая устаревшие данные, либо оно может сбросить на диск в swap раздел несколько достаточно редко используемых порций (страниц) программы. Трудно предсказать, какой из способов будет более эффективным. Ядро, исходя из недавней истории действий в системе, делает попытку приблизительно отгадать на данный момент эффективность каждого из этих двух методов.
До ядер версии 2.6 у пользователя не было возможности влиять на эти оценки, так что могла возникнуть ситуации, когда ядро часто делало неправильный выбор, что приводило к пробуксовыванию и низкой производительности. В версии 2.6 ситуация с подкачкой памяти была изменена.
Подкачке памяти назначается значение от 0 до 100, которое изменяет баланс между подкачкой памяти приложений и освобождением кэш памяти. При значении 100 ядро всегда предпочтет найти неактивные страницы и сбросить их на диск в раздел swap; в других случаях этот сброс будет осуществляться в зависимости от того, сколько памяти занимает приложение и насколько трудно выпонять кэширование при поиске и удалении неактивных элементов.
По умолчанию для этого устанавливается значение 60. Значение 0 дает нечто близкое к старому поведению, когда приложения, которым нужна память, заставляли немного уменьшить размер кэша оперативной памяти. Для ноутбуков, для которых предпочтительно иметь диски с меньшей скоростью вращения, рекомендуется использовать значение 20 или меньше.
Заключение
В этой статье я поместил информацию, которая была мне полезной в моей работе в качестве системного администратора, и я надеюсь, что она может оказаться полезной и для вас.
Источник
unixforum.org
Форум для пользователей UNIX-подобных систем
- Темы без ответов
- Активные темы
- Поиск
- Статус форума
Разбираемся в кэшах Linux систем и Swaping-е
Модератор: Bizdelnick
Разбираемся в кэшах Linux систем и Swaping-е
Сообщение Gineaser » 05.06.2011 21:52
Доброго время суток.
Только начал осваивать линукс. Поэтому периодически возникают достаточно специфические вопросы, на которые я не смог найти ответы быстрым поиском по гуглу.
Есть сервер на базе Ubuntu-Server. На нем 12Gb оперативной памяти, а так же swap раздел объемом 20Gb. Решил разобрать по поводу кэша в линукс системах.
Мне кажется эта тема станет полезной не только для меня, но и для других пользователей операционных систем Unix и, наверное, даже для тех, кто далеко не новичок.
Для контроля за оперативной памятью, \\\\\\\»коробочного решения\\\\\\\» я знаю следующие методы: (Нажать на spoiler для просмотра)
Вывод команды free -m:
Вывод cat /proc/meminfo:
Изучение документации помогло кое что понять.
Во первых swap . Если swaping включен (man swapon, /proc/swaps) не используемые страницы в памяти будут скидываться в виртуальную область на жестком диске, тем самым освобождая физическую память (оперативную) и давая ресурсы для других приложений. Когда требуется обратиться к тем страницам, которые содержатся в свопе, они считываются с жесткого диска, помещаются в оперативку и обрабатываются.
Свапингом можно управлять, к примеру установить планку (значение свободной оперативки) при котором не используемые страницы начнут скидываться на жесткий диск.
Делать это можно посредством занесения значения в файл /proc/sys/vm/swappiness. По умолчанию значение 60. Оно в процентах. Что бы было проще понять приведу пример:
Если у меня оперативная память забивается больше чем на 40%, то не используемые страницы начинают писать на жесткий диск в swap. Если поставим значение 5% то swap начнет использоваться когда оперативная память забьется на 95%.
Еще, насколько я понял, можно то же самое сделать но с ограничением по количеству доступных страниц оперативки. Делается это в файле /proc/sys/vm/freepages
Файл имеет 3 значения через пробел в строчку. .
Первое значение — это предел, при котором система перестанет хранить в памяти не используемые страницы и начнет все скидывать в свап
Второе значение — это количество свободных страниц в оперативке, при котором система начнет \\\\\\\»суетится\\\\\\\» по в документации, на сколько я понял. Т.е. начнет активно использовать свап.
Третье значение — это количество свободных страниц в оперативке при котором система не свапит не используемые страницы.
Есть еще способ управление непосредственно самими страницами в оперативной памяти по средствам файла /proc/sys/vm/kswapd
Так же 3 значения.
Первое значение — максимальное количество страниц которые будут выбрасываться из памяти за раз. Если обрабатываются очень большие объемы данных с использованием свапа, мне кажется стоит увеличивать это значение.
Второе значение — количество попыток свапинга страницы. Не совсем понимая глубокую физику процесса сваппинга не знаю как влияет это значение и на что.
Третье значение — тоже не сосем понял предназначение, но если всё же понял из документации — это количество страниц которые будут считываться из/в оперативку за один запрос на отпраку в свап или извлечение из свапа. Ставить слишком много думаю не разумно. Тут скорее надо исходить из специфики железа (шина оперативной памяти, частота, двухканальные и прочие режимы работы)
Во вторых существует еще 2 вида кэша, что представляет для меня особый интерес.
Первый кэш из них — это кэш inode и dentry дескрипторов.
На сколько я понял из англоязычной документации это кэш который помещается в оперативную память при обращение к каталогам в файловой системе, которые грубо говоря являются файлами, содержащими как раз эти дескрипторы:
— (метаданные файлов внутри этого каталога) inode — время последнего доступа, права, UID/GID, размер. Не содержат имен, тем самым не имеют привязку к конкретному файлу, который представляет собой для ОС — набор байт.
— dentry — привязывают inode файла и имя файла в ФС.
И логически рассуждая, я пришел к выводу что кэш inode и dentry увеличивают время доступа к конкретному файлу, т.е. метаданные и связи хранятся в оперативки и считывать их с блочных устройств не надо.
Управлять этим кешем (очищать) можно по средстам принудительного ввода в файл /proc/sys/vm/drop_caches значения 2. К примеру так: echo 2 > /proc/sys/vm/drop_caches
Но как включить этот кэш я не нашел, на сколько я могу судить по командам мониторинга оперативки выше, он не используется. Можно посмотреть информацию о этих кешах через cat /proc/slabinfo | grep inode/dentry. Еще можно так: cat /proc/sys/fs/dentry-state,
cat /proc/sys/fs/inode-state
Второй кэш — это pagecache .
И вот тут я не совсем понял для чего он вообще и что из себя представляет. Непосредственно именно он забивает оперативную память. Хорошо понятно что это не swap. И по названию это какие то страницы оперативной памяти. Но какие и страницы чего?
Наверно к этому кэшу можно отнести следующие настройки: /proc/sys/vm/buffermem
Указывается в процентах общее количество системной буферной памяти. Имеет три значения идущие в строчку и разделенные проблемами. Из документации понял что:
первое значение — минимальный уровень буферной памяти
второе значение — уровень буферной памяти, который будет работать в том случае, если вы уберете скажем линейку оперативки, т.е. произойдет уменьшение общего количества оперативной памяти (?) так или нет не знаю.
третье значение — уровень максимально доступной буферной памяти.
Очистка этого кэша производится вводом в файл /proc/sys/vm/drop_caches значения 1
Сразу очищается почти вся оперативная память. Сбоев в работе не замечено. После очистки необходимо выполнять sync.
Кстати значение \\\\\\\»0\\\\\\\» для файла /proc/sys/vm/drop_caches установит значение по дефолту, а значение \\\\\\\»3\\\\\\\» очистит и inode+dentry кэш + pagecache.
Все что узнал вкратце изложил. Если я чего то не понимаю или не правильно представляю, очень прошу поправить и объяснить. Особенно хочу узнать что же такое всё же pagecache.
Источник