- Docker. Начало
- Предыстрория
- Контейнеры
- Образы
- Docker-контейнеры
- Docker
- Registry
- Dockerfile
- Заключение
- Понимая Docker
- Что такое докер?
- Для чего я могу использовать docker?
- Быстрое выкладывание ваших приложений
- Более простое выкладывание и разворачивание
- Высокие нагрузки и больше полезных нагрузок
- Главные компоненты Docker
- Архитектура Docker
- Docker-демон
- Docker-клиент
- Внутри docker-а
- Образы
- Реестр
- Контейнеры
- Так как же работает Docker?
- Как работает образ?
- Как работает docker реестр?
- Как работает контейнер?
- Что происходит, когда запускается контейнер?
- Используемые технологии
- Пространство имен(namespaces)
- Control groups (контрольные группы)
- Union File System
Docker. Начало
Примерно такие же эмоции я и мои коллеги испытывали, когда начинали работать с Docker. В подавляющем большинстве случаев это происходило от недостатка понимания основных механизмов, поэтому его поведение казалось нам непредсказуемым. Сейчас страсти поутихли и вспышки ненависти происходят все реже и все слабее. Более того, постепенно мы на практике оцениваем его достоинства и он начинает нам нравиться… Чтобы снизить степень первичного отторжения и добиться максимального эффекта от использования, нужно обязательно заглянуть на кухню Docker’a и хорошенько там осмотреться.
Начнем с того, для чего же нам нужен Docker:
- изолированный запуск приложений в контейнерах
- упрощение разработки, тестирования и деплоя приложений
- отсутствие необходимости конфигурировать среду для запуска — она поставляется вместе с приложением — в контейнере
- упрощает масштабируемость приложений и управление их работой с помощью систем оркестрации контейнеров.
Предыстрория
Для изоляции процессов, запущенных на одном хосте, запуска приложений, предназначенных для разных платформ, можно использовать виртуальные машины. Виртуальные машины делят между собой физические ресурсы хоста:
- процессор,
- память,
- дисковое пространство,
- сетевые интерфейсы.
На каждой ВМ устанавливаем нужную ОС и запускаем приложения. Недостатком такого подхода является то, что значительная часть ресурсов хоста расходуется не на полезную нагрузку(работа приложений), а на работу нескольких ОС.
Контейнеры
Альтернативным подходом к изоляции приложений являются контейнеры. Само понятие контейнеров не ново и давно известно в Linux. Идея состоит в том, чтобы в рамках одной ОС выделить изолированную область и запускать в ней приложение. В этом случае говорим о виртуализации на уровне ОС. В отличие от ВМ контейнеры изолированно используют свой кусочек ОС:
- файловая система
- дерево процессов
- сетевые интерфейсы
- и др.
Т.о. приложение, запущенное в контейнере думает, что оно одно во всей ОС. Изоляция достигается за счет использования таких Linux-механизмов, как namespaces и control groups. Если говорить просто, то namespaces обеспечивают изоляцию в рамках ОС, а control groups устанавливают лимиты на потребление контейнером ресурсов хоста, чтобы сбалансировать распределение ресурсов между запущенными контейнерами.
Т.о. контейнеры сами по себе не являются чем-то новым, просто проект Docker, во-первых, скрыл сложные механизмы namespaces, control groups, а во-вторых, он окружен экосистемой, обеспечивающей удобное использование контейнеров на всех стадиях разработки ПО.
Образы
Образ в первом приближении можно рассматривать как набор файлов. В состав образа входит все необходимое для запуска и работы приложения на голой машине с докером: ОС, среда выполнения и приложение, готовое к развертыванию.
Но при таком рассмотрении возникает вопрос: если мы хотим использовать несколько образов на одном хосте, то будет нерационально как с точки зрения загрузки, так и с точки зрения хранения, чтобы каждый образ тащил все необходимое для своей работы, ведь большинство файлов будут повторяться, а различаться — только запускаемое приложение и, возможно, среда выполнения. Избежать дублирования файлов позволяет структура образа.
Образ состоит из слоев, каждый из которых представляет собой неизменяемую файловую систему, а по-простому набор файлов и директорий. Образ в целом представляет собой объединенную файловую систему (Union File System), которую можно рассматривать как результат слияния файловых систем слоев. Объединенная файловая система умеет обрабатывать конфликты, например, когда в разных слоях присутствуют файлы и директории с одинаковыми именами. Каждый следующий слой добавляет или удаляет какие то файлы из предыдущих слоев. В данном контексте «удаляет» можно рассматривать как «затеняет», т.е. файл в нижележащем слое остается, но его не будет видно в объединенной файловой системе.
Можно провести аналогию с Git: слои — это как отдельные коммиты, а образ в целом — результат выполнения операции squash. Как мы увидим дальше, на этом параллели с Git не заканчиваются. Существуют различные реализации объединенной файловой системы, одна из них — AUFS.
Для примера рассмотрим образ произвольного .NET приложения MyApplication: первым слоем является ядро Linux, далее следуют слои ОС, среды исполнения и уже самого приложения.
Слои являются read only и, если в слое MyApplication нужно изменить файл, находящийся в слое dotnet, то файл сначала копируется в нужный слой, а потом в нем изменяется, оставаясь в исходном слое в первозданном виде.
Неизменяемость слоев позволяет использовать их всеми образами на хосте. Допустим MyApplication — это веб-приложение, которое использует БД и взаимодействует также с NodeJS сервером.
Совместное использование проявляется также и при скачивании образа. Первым загружается манифест, который описывает какие слои входят в образ. Далее скачиваются только те слои из манифеста, которых еще нет локально. Т.о. если мы для MyApplication уже скачали ядро и ОС, то для PostgreSQL и Node.js эти слои уже загружаться не будут.
- Образ — это набор файлов, необходимых для работы приложения на голой машине с установленным Docker.
- Образ состоит из неизменяемых слоев, каждый из которых добавляет/удаляет/изменяет файлы из предыдущего слоя.
- Неизменяемость слоев позволяет их использовать совместно в разных образах.
Docker-контейнеры
Docker-контейнер строится на основе образа. Суть преобразования образа в контейнер состоит в добавлении верхнего слоя, для которого разрешена запись. Результаты работы приложения (файлы) пишутся именно в этом слое.
Например, мы создали на основе образа с PostgreSQL сервером контейнер и запустили его. Когда мы создаем БД, то соответствующие файлы появляются в верхнем слое контейнера — слое для записи.
Можно провести и обратную операцию: из контейнера сделать образ. Верхний слой контейнера отличается от остальных только лишь разрешением на запись, в остальном это обычный слой — набор файлов и директорий. Делая верхний слой read only, мы преобразуем контейнер в образ.
Теперь я могу перенести образ на другую машину и запустить. При этом на сервере PostgreSQL можно будет увидеть БД, созданные на предыдущем этапе. Когда при работе контейнера будут внесены изменения, то файл БД будет скопирован из неизменяемого слоя с данными в слой для записи и там уже измененен.
Docker
Когда мы устанавливаем докер на локальную машину, то получаем клиент (CLI) и http-сервер, работающий как демон. Сервер предоставляет REST API, а консоль просто преобразует введенные команды в http-запросы.
Registry
Registry — это хранилище образов. Самым известным является DockerHub. Он напоминает GitHub, только содержит образы, а не исходный код. На DockerHub также есть репозитории, публичные и приватные, можно скачивать образы (pull), заливать изменения образов (push). Скачанные однажды образы и собранные на их основе контейнеры хранятся локально, пока не будут удалены вручную.
Существует возможность создания своего хранилища образов, тогда при необходимости Docker будет искать там образы, которых еще нет локально. Надо сказать, что при использовании Docker хранилище образов становится важнейшим звеном в CI/CD: разработчик делает коммит в репозиторий, запускаются тесты. Если тесты прошли успешно, то на основе коммита обновляется существующий или собирается новый образ с последующим деплоем. Причем в registry обновляются не целые образы, а только необходимые слои.
При этом важно не ограничивать восприятие образа как некой коробки в которой приложение просто доставляется до пункта назначения и потом запускается. Приложение может и собираться внутри образа (правильнее сказать внутри контейнера, но об этом чуть позже). На схеме выше сервер, занимающийся сборкой образов, может иметь только установленный Docker, а не различные среды, платформы и приложения, необходимые для сборки разных компонентов нашего приложения.
Dockerfile
Dockerfile представляет собой набор инструкций, на основе которых строится новый образ. Каждая инструкция добавляет новый слой к образу. Для примера рассмотрим Dockerfile, на основе которого мог бы быть создан образ рассмотренного ранее .NET-приложения MyApplication:
Рассмотрим отдельно каждую инструкцию:
- определяем базовый образ, на основе которого будем строить свой. В данном случае берем microsoft/aspnetcore — официальный образ от Microsoft, который можно найти на DockerHub
- задаем рабочую директорию внутри образа
- копируем предварительно спаблишенное приложение MyApplication в рабочую директорию внутри образа. Сначала пишется исходная директория — путь относительно контекста, указанного в команде docker build , а вторым аргументом — целевая директория внутри образа, в данном случае точка обозначает рабочую директорию
- конфигурируем контейнер как исполняемый: в нашем случае для запуска контейнера будет выполнена команда dotnet MyApplication.dll
Если в директории с Dockerfile выполнить команду docker build , то мы получим образ на основе microsoft/aspnetcore, к которому будет добавлено еще три слоя.
Рассмотрим еще один Dockerfile, который демонстрирует прекрасную возможность Docker, обеспечивающую легковесность образов. Подобный файл генерирует VisualStudio 2017 для проекта с поддержкой контейнеров и он позволяет собирать образ из исходного кода приложения.
Инструкции в файле разбиты на две секции:
- Определение образа для сборки приложения: microsoft/aspnetcore-build. Данный образ предназначен для сборки, паблиша и запуска .NET приложений и согласно DockerHub с тегом 2.0 имеет размер 699 MB. Далее происходит копирование исходных файлов приложения внутрь образа и внутри него выполняются команды dotnet restore и dotnet publish с размещением результатов в директории /publish внутри образа.
- Определяется базовый образ, в данном случае это microsoft/aspnetcore, который содержит в себе только среду исполнения и согласно DockerHub с тегом 2.0 имеет размер всего 141 MB. Далее определяется рабочая директория и в нее копируется результат предыдущей стадии (ее имя указывается в аргументе —from ), определяется команда запуска контейнера и все — образ готов.
В итоге изначально имея исходный код приложения, на основе тяжелого образа с SDK было спаблишено приложение, а потом результат размещен поверх легкого образа, содержащего только среду исполнения!
Напоследок хочу отметить, что намеренно для простоты оперировал понятием образ, рассматривая работу с Dockerfile. На самом деле изменения, вносимые каждой инструкцией происходят конечно же не в образе (ведь в нем только неизменяемые слои), а в контейнере. Механизм такой: из базового образа создается контейнер (добавляется ему слой для записи), выполняется инструкция в данном слое (она может добавлять файлы в слой для записи: COPY или нет: ENTRYPOINT ), вызывается команда docker commit и получается образ. Процесс создания контейнера и коммита в образ повторяется для каждой инструкции в файле. В итоге в процессе формирования конечного образа создается столько промежуточных образов и контейнеров, сколько инструкций в файле. Все они автоматически удаляются после окончания сборки конечного образа.
Заключение
Конечно же Docker не панацея и его использование должно быть оправдано и мотивировано не только желанием использовать современную технологию, о которой многие говорят. При этом я уверен, что Docker, примененный грамотно и к месту, может принести много пользы на всех стадиях разработки ПО и облегчить жизнь всем участникам процесса.
Надеюсь смог раскрыть базовые моменты и заинтересовать к дальнейшему изучению вопроса. Конечно же для овладения Docker одной этой статьи недостаточно, но, надеюсь, она станет одним из элементов пазла для осознания общей картины происходящего в мире контейнеров под управлением Docker.
Источник
Понимая Docker
Уже несколько месяцев использую docker для структуризации процесса разработки/доставки веб-проектов. Предлагаю читателям «Хабрахабра» перевод вводной статьи о docker — «Understanding docker».
Что такое докер?
Докер — это открытая платформа для разработки, доставки и эксплуатации приложений. Docker разработан для более быстрого выкладывания ваших приложений. С помощью docker вы можете отделить ваше приложение от вашей инфраструктуры и обращаться с инфраструктурой как управляемым приложением. Docker помогает выкладывать ваш код быстрее, быстрее тестировать, быстрее выкладывать приложения и уменьшить время между написанием кода и запуска кода. Docker делает это с помощью легковесной платформы контейнерной виртуализации, используя процессы и утилиты, которые помогают управлять и выкладывать ваши приложения.
В своем ядре docker позволяет запускать практически любое приложение, безопасно изолированное в контейнере. Безопасная изоляция позволяет вам запускать на одном хосте много контейнеров одновременно. Легковесная природа контейнера, который запускается без дополнительной нагрузки гипервизора, позволяет вам добиваться больше от вашего железа.
Платформа и средства контейнерной виртуализации могут быть полезны в следующих случаях:
- упаковывание вашего приложения (и так же используемых компонент) в docker контейнеры;
- раздача и доставка этих контейнеров вашим командам для разработки и тестирования;
- выкладывания этих контейнеров на ваши продакшены, как в дата центры так и в облака.
Для чего я могу использовать docker?
Быстрое выкладывание ваших приложений
Docker прекрасно подходит для организации цикла разработки. Docker позволяет разработчикам использовать локальные контейнеры с приложениями и сервисами. Что в последствии позволяет интегрироваться с процессом постоянной интеграции и выкладывания (continuous integration and deployment workflow).
Например, ваши разработчики пишут код локально и делятся своим стеком разработки (набором docker образов) с коллегами. Когда они готовы, отравляют код и контейнеры на тестовую площадку и запускают любые необходимые тесты. С тестовой площадки они могут оправить код и образы на продакшен.
Более простое выкладывание и разворачивание
Основанная на контейнерах docker платформа позволят легко портировать вашу полезную нагрузку. Docker контейнеры могут работать на вашей локальной машине, как реальной так и на виртуальной машине в дата центре, так и в облаке.
Портируемость и легковесная природа docker позволяет легко динамически управлять вашей нагрузкой. Вы можете использовать docker, чтобы развернуть или погасить ваше приложение или сервисы. Скорость docker позволяет делать это почти в режиме реального времени.
Высокие нагрузки и больше полезных нагрузок
Docker легковесен и быстр. Он предоставляет устойчивую, рентабельную альтернативу виртуальным машинам на основе гипервизора. Он особенно полезен в условиях высоких нагрузок, например, при создания собственного облака или платформа-как-сервис (platform-as-service). Но он так же полезен для маленьких и средних приложений, когда вам хочется получать больше из имеющихся ресурсов.
Главные компоненты Docker
Docker состоит из двух главных компонент:
- Docker: платформа виртуализации с открытым кодом;
- Docker Hub: наша платформа-как-сервис для распространения и управления docker контейнерами.
Примечание! Docker распространяется по Apache 2.0 лицензии.
Архитектура Docker
Docker использует архитектуру клиент-сервер. Docker клиент общается с демоном Docker, который берет на себя тяжесть создания, запуска, распределения ваших контейнеров. Оба, клиент и сервер могут работать на одной системе, вы можете подключить клиент к удаленному демону docker. Клиент и сервер общаются через сокет или через RESTful API.
Docker-демон
Как показано на диаграмме, демон за пускается на хост-машине. Пользователь не взаимодействует с сервером на прямую, а использует для этого клиент.
Docker-клиент
Docker-клиент, программа docker — главный интерфейс к Docker. Она получает команды от пользователя и взаимодействует с docker-демоном.
Внутри docker-а
Чтобы понимать, из чего состоит docker, вам нужно знать о трех компонентах:
- образы (images)
- реестр (registries)
- контейнеры
Образы
Docker-образ — это read-only шаблон. Например, образ может содержать операционку Ubuntu c Apache и приложением на ней. Образы используются для создания контейнеров. Docker позволяет легко создавать новые образы, обновлять существующие, или вы можете скачать образы созданные другими людьми. Образы — это компонента сборки docker-а.
Реестр
Docker-реестр хранит образы. Есть публичные и приватные реестры, из которых можно скачать либо загрузить образы. Публичный Docker-реестр — это Docker Hub. Там хранится огромная коллекция образов. Как вы знаете, образы могут быть созданы вами или вы можете использовать образы созданные другими. Реестры — это компонента распространения.
Контейнеры
Контейнеры похожи на директории. В контейнерах содержится все, что нужно для работы приложения. Каждый контейнер создается из образа. Контейнеры могут быть созданы, запущены, остановлены, перенесены или удалены. Каждый контейнер изолирован и является безопасной платформой для приложения. Контейнеры — это компонента работы.
Так как же работает Docker?
Пока мы знаем, что:
- можем создавать образы, в которых находятся наши приложения;
- можем создавать контейнеры из образов, для запуска приложений;
- можем распространять образы через Docker Hub или другой реестр образов.
Давайте посмотрим, как эти компоненты сочетаются.
Как работает образ?
Мы уже знаем, что образ — это read-only шаблон, из которого создается контейнер. Каждый образ состоит из набора уровней. Docker использует union file system для сочетания этих уровней в один образ. Union file system позволяет файлам и директориями из разных файловых систем (разным ветвям) прозрачно накладываться, создавая когерентную файловую систему.
Одна из причин, по которой docker легковесен — это использование таких уровней. Когда вы изменяете образ, например, обновляете приложение, создается новый уровень. Так, без замены всего образа или его пересборки, как вам возможно придётся сделать с виртуальной машиной, только уровень добавляется или обновляется. И вам не нужно раздавать весь новый образ, раздается только обновление, что позволяет распространять образы проще и быстрее.
В основе каждого образа находится базовый образ. Например, ubuntu, базовый образ Ubuntu, или fedora, базовый образ дистрибутива Fedora. Так же вы можете использовать образы как базу для создания новых образов. Например, если у вас есть образ apache, вы можете использовать его как базовый образ для ваших веб-приложений.
Примечание! Docker обычно берет образы из реестра Docker Hub.
Docker образы могут создаться из этих базовых образов, шаги описания для создания этих образов мы называем инструкциями. Каждая инструкция создает новый образ или уровень. Инструкциями будут следующие действия:
- запуск команды
- добавление файла или директории
- создание переменной окружения
- указания что запускать когда запускается контейнер этого образа
Эти инструкции хранятся в файле Dockerfile . Docker считывает это Dockerfile , когда вы собираете образ, выполняет эти инструкции, и возвращает конечный образ.
Как работает docker реестр?
Реестр — это хранилище docker образов. После создания образа вы можете опубликовать его на публичном реестре Docker Hub или на вашем личном реестре.
С помощью docker клиента вы можете искать уже опубликованные образы и скачивать их на вашу машину с docker для создания контейнеров.
Docker Hub предоставляет публичные и приватные хранилища образов. Поиск и скачивание образов из публичных хранилищ доступно для всех. Содержимое приватных хранилищ не попадает в результат поиска. И только вы и ваши пользователи могут получать эти образы и создавать из них контейнеры.
Как работает контейнер?
Контейнер состоит из операционной системы, пользовательских файлов и метаданных. Как мы знаем, каждый контейнер создается из образа. Этот образ говорит docker-у, что находится в контейнере, какой процесс запустить, когда запускается контейнер и другие конфигурационные данные. Docker образ доступен только для чтения. Когда docker запускает контейнер, он создает уровень для чтения/записи сверху образа (используя union file system, как было указано раньше), в котором может быть запущено приложение.
Что происходит, когда запускается контейнер?
Или с помощью программы docker , или с помощью RESTful API, docker клиент говорит docker демону запустить контейнер.
$ sudo docker run -i -t ubuntu /bin/bash
Давайте разберемся с этой командой. Клиент запускается с помощью команды docker , с опцией run , которая говорит, что будет запущен новый контейнер. Минимальными требованиями для запуска контейнера являются следующие атрибуты:
- какой образ использовать для создания контейнера. В нашем случае ubuntu
- команду которую вы хотите запустить когда контейнер будет запущен. В нашем случае /bin/bash
Что же происходит под капотом, когда мы запускаем эту команду?
Docker, по порядку, делает следующее:
- скачивает образ ubuntu: docker проверяет наличие образа ubuntu на локальной машине, и если его нет — то скачивает его с Docker Hub. Если же образ есть, то использует его для создания контейнера;
- создает контейнер: когда образ получен, docker использует его для создания контейнера;
- инициализирует файловую систему и монтирует read-only уровень: контейнер создан в файловой системе и read-only уровень добавлен образ;
- инициализирует сеть/мост: создает сетевой интерфейс, который позволяет docker-у общаться хост машиной;
- Установка IP адреса: находит и задает адрес;
- Запускает указанный процесс: запускает ваше приложение;
- Обрабатывает и выдает вывод вашего приложения: подключается и логирует стандартный вход, вывод и поток ошибок вашего приложения, что бы вы могли отслеживать как работает ваше приложение.
Теперь у вас есть рабочий контейнер. Вы можете управлять своим контейнером, взаимодействовать с вашим приложением. Когда решите остановить приложение, удалите контейнер.
Используемые технологии
Докер написан на Go и использует некоторые возможности ядра Linux, чтобы реализовать приведенный выше функционал.
Пространство имен(namespaces)
Docker использует технологию namespaces для организации изолированных рабочих пространств, которые мы называем контейнерами. Когда мы запускаем контейнер, docker создает набор пространств имен для данного контейнера.
Это создает изолированный уровень, каждый аспект контейнера запущен в своем простанстве имен, и не имеет доступ к внешней системе.
Список некоторых пространств имен, которые использует docker:
- pid: для изоляции процесса;
- net: для управления сетевыми интерфейсами;
- ipc: для управления IPC ресурсами. (ICP: InterProccess Communication);
- mnt: для управления точками монтирования;
- utc: для изолирования ядра и контроля генерации версий(UTC: Unix timesharing system).
Control groups (контрольные группы)
Docker также использует технологию cgroups или контрольные группы. Ключ к работе приложения в изоляции, предоставление приложению только тех ресурсов, которые вы хотите предоставить. Это гарантирует, что контейнеры будут хорошими соседями. Контрольные группы позволяют разделять доступные ресурсы железа и если необходимо, устанавливать пределы и ограничения. Например, ограничить возможное количество памяти контейнеру.
Union File System
Union File Sysem или UnionFS — это файловая система, которая работает создавая уровни, делая ее очень легковесной и быстрой. Docker использует UnionFS для создания блоков, из которых строится контейнер. Docker может использовать несколько вариантов UnionFS включая: AUFS, btrfs, vfs и DeviceMapper.
Источник