- Управление памятью в Linux
- Cached
- dentry/inode caches
- Buffer Cache
- Отображение памяти в команде top: VIRT, RES и SHR
- Подкачка памяти — swap
- Кэширование памяти swap (Swap Cach)
- Подкачка памяти
- Заключение
- Оптимизация Linux под нагрузку. Кэширование операций записи на диск.
- Кэширование в Linux
- Настройка pdflush
- Итого: Когда pdflush начинает запись?
- Процесс записи страниц
- Рекомендации по оптимизации Linux для операций, требующий частой записи
- Инструкция по настройке параметров
Управление памятью в Linux
Я думаю, что обычно у каждого пользователя Linux рано или поздно возникает следующий вопрос, задаваемый при администрировании рабочей станции или сервера — «Почему в Linux используется вся моя оперативная память, хотя никакой большой работы не выполняется? «. К нему сегодня я добавлю еще один вопрос, который, я уверен, обычен для многих системных администраторов Linux — «Почему команда free показывает память swap и почему у меня так много свободной оперативной памяти?», так что сегодняшнее мое исследование SwapCached, которое я представляю вам, может оказаться полезным, либо, по крайней мере, ознакомит, как я надеюсь, с информацией об управлении памятью в системе Linux.
В Linux применяется следующее основное правило: неиспользуемая страница оперативной памяти считается потерянной памятью. Оперативная память тратится не только для данных, используемых прикладными приложениями. В ней также хранятся данные для самого ядра и, самое главное, в эту память могут отображаться данные, хранящиеся на жестком диске, что используется для супер-быстрого к ним доступа — команда top указывает об этом в столбцах «buffers/cache» («буферы / кэш»), «disk cache» («дисковый кэш)» или «cached» («кэшировано»). Кэшированная память по сути свободна, поскольку ее можно быстро освободить в случае, если работающей (или только что запущенной) программе потребуется память.
Сохранение кэша означает, что если кому-нибудь еще раз потребуются те же самые данные, то есть большая вероятность, что они все еще будут находиться в кэше в оперативной памяти.
Поэтому первое, чем можно воспользоваться в вашей системе, это команда free , которая предоставит вам первоначальную информацию о том, как используется ваша оперативная память.
Ниже приведены данные, выдаваемые на моем старом ноутбуке с системой Xubuntu:
В строке -/+ buffers/cache показывается, сколько памяти используется и сколько памяти свободно с точки зрения ее использования в приложениях. В этом примере приложениями уже используется 972 Мб памяти и еще 534 МБ памяти могут быть использованы.
Вообще говоря, если используется хотя бы немного памяти подкачки swap, то использование памяти вообще не повлияет на производительность системы.
Но если вы хотите получить более подробную информацию о вашей памяти, то вы должны проверить файл /proc/meminfo; в моей системе Xubuntu с ядром 3.2.0-25-generic результат будет следующим:
Что означает MemTotal (Всего памяти) и MemFree (Свободная память), понятно для всех; остальные значения поясняются дальше:
Cached
Страничный кэш в системе Linux («Cached:» в meminfo) является в большинстве систем самым крупным потребителем памяти. Каждый раз, когда вы выполняете операцию чтения read () из файла, расположенного на диске, данные считываются в память и помещаются в страничный кэш. После того, как операция read() завершается, ядро может просто выбросить страницу памяти, так как она не используется. Однако, если вы второй раз выполняете операцию чтения той же самой части файла, данные будут считываться непосредственно из памяти и обращения к диску не будет. Это невероятно ускоряет работу и, поэтому, в Linux так интенсивно используется кэширование страниц: ставка делается на то, что если вы обратились к некоторой странице дисковой памяти, то вскоре вы обратитесь к ней снова.
dentry/inode caches
Каждый раз, когда вы в файловой системе выполняете операцию «ls’» (или любую другую операцию: open(), stat() и т.д.), ядру требуются данные, которые находятся на диске. Ядро анализирует эти данные, находящиеся на диске, и помещает его в некоторых структуры данных, независимые от файловой системы, с тем, чтобы они могли в различных файловых системах обрабатываться одним и тем же образом. Таким же самым образом, как кэширование страниц в приведенных выше примерах, ядро может после того, как будет завершена команда «ls», стереть эти структуры. Тем не менее, делается такое же предположение, как и раньше: если вы однажды считали эти данные, вы обязательно прочитаете их еще раз. Ядро хранит эту информацию в нескольких местах «кэша», которые называются кэш памятью dentry и inode. Кэш память dentries являются общей для всех файловых систем, но каждая файловая система имеет свой собственный кэш inodes.
Эта оперативная память является в meminfo составной частью «Slab:»
Вы можете просмотреть различную кэш память и узнать ее размеры с помощью следующей команды:
Buffer Cache
Кэш буфера («Buffers:» в meminfo) является близким родственником кэш памяти dentry/inode. Данные dentries и inodes, размещаемые в памяти, представляют собой описание структур на диске, но располагаются они по-разному. Это, возможно, связано с тем, что у нас в копии, расположенной в памяти, используется такая структура, как указатель, но на диске ее нет. Может также случиться, что на диске байты будут располагаться не в том порядке, как это нужно процессору.
Отображение памяти в команде top: VIRT, RES и SHR
Если вы запускаете команду top , то три строки будут описывать к использованию памяти. Вы должны понимать их значение с тем, чтобы понять, сколько памяти требуется вашему серверу.
VIRT является сокращением от virtual size of a process (виртуальный размер процесса) и представляет собой общий объем используемой памяти: памяти, отображаемой самой в себя (например, памяти видеокарты для сервера X), файлов на диске, которые отображаются в память (особенно это касается разделяемых библиотек) и памяти, разделяемой совместно с другими процессами. Значение VIRT указывает, сколько памяти в настоящий момент доступно программе.
RES является сокращением от resident size (размер резидентной части) и является точным указателем того, сколько в действительности потребляется процессом реальной физической памяти. (Что также соответствует значению, находящемуся непосредственно в колонке %MEM). Это значение практически всегда меньше, чем размер VIRT, т.к. большинство программ зависит от библиотеки C.
SHR показывает, какая величина от значения VIRT является в действительности разделяемой (по памяти или за счет использования библиотек). В случае библиотек, это не обязательно означает, что вся библиотека находится в резидентной памяти. Например, если программа использует только несколько функций библиотеки, то при отображении в память будет использована вся библиотека, что будет учтено в значениях VIRT и SHR, но, на самом деле, будет загружена часть библиотеки, содержащая используемые функции, и это будет учтено в значении RES.
Подкачка памяти — swap
Теперь мы видим некоторую информацию о нашей оперативной памяти, но что происходит, когда больше нет свободной оперативной памяти? Если у меня нет свободной памяти, а мне нужна память для страничного кэширования, кэширования inode или кэширования dentry, то где я ее могу получить?
Прежде всего, ядро пытается не допустить, чтобы у вас значение свободной оперативной памяти приближалось к 0 байтов. Это связано с тем, что когда нужно освободить оперативную память, то обычно требуется выделить немного больше памяти. Это обусловлено тем, что нашему ядру требуется своего рода «рабочее пространство» для выполнения своих действий, и поэтому, если размер свободной оперативной памяти становится равным нулю, ядро ничего больше сделать не сможет.
На основании общего объема оперативной памяти и соотношения ее различных типов (память high/low), ядро эвристически определяет то количество памяти в качестве рабочего пространства, при котором оно чувствует себя комфортно. Когда эта величина достигается, ядро начинает возвращать память для других различных задач, описанных выше. Ядро может вернуть себе память из любой из этих задач.
Однако, есть другой потребитель памяти, о котором мы, возможно, уже забыли: данные пользовательских приложений.
Как только ядро принимает решение, что ему не требуется получать память из каких-либо других источников, которые мы описывали ранее, оно запускает память подкачки swap. В ходе этого процесса оно получает данные пользовательских приложений и записывает их в специальное место (или места) на диске. Обратите внимание, что это происходит не только тогда, когда оперативная память близка к заполнению, ядро может принять решение перенести в память swap также данные, находящиеся в оперативной памяти, если они некоторое время не использовались (смотрите раздел «Подкачка памяти»).
По этой причине, даже система с огромным количеством оперативной памяти (даже если ее правильно настроить) может использовать память подкачки swap. Есть много страниц памяти, в которых находятся данные пользовательских приложений, но эти страницы используются редко. Все это является причиной, чтобы перенести их в раздел swap и использовать оперативную память для других целей.
Вы можете с помощью команды free проверить, используется ли память swap; для примера, который я уже использовал выше, в последней строке выдаваемых данных показывается информация о размере памяти swap:
Мы видим, что на этом компьютере уже используется 24 мегабайта памяти swap и для использования доступно еще 462 Мб.
Таким образом, сам факт использования памяти swap не является доказательством того, что в системе при ее текущей рабочей нагрузке слишком мало оперативной памяти. Лучший способ это определить с помощью команды vmstat — если вы увидите, что много страниц памяти swap перемещаются на диск и обратно, то это означает, что память swap используется активно, что система «пробуксовывает» или что ей нужна новая оперативная память поскольку это ускорит подкачку данных приложений.
На моем ноутбуке Gentoo, когда он простаивает, это выглядит следующим образом:
Обратите внимание на то, что в выходных данных команды free у вас есть только 2 значения, относящихся к памяти swap: free (свободная память) и used (используемая память), но для памяти подкачки swap также есть еще одно важное значение: Swap cache (показатель кэширования памяти подкачки).
Кэширование памяти swap (Swap Cach)
Кеширование памяти swap по сути очень похоже на страничное кеширование. Страница данных пользовательского приложения, записываемая на диск, очень похожа на страницу данных файла, находящуюся на диске. Каждый раз, когда страница считывается из файла подкачки («si» в vmstat), она помещается в кэш подкачки. Так же, как страничное кэширование, все это выполняется ядром. Ядро решает, нужно ли вернуть обратно на диск конкретную страницу. Если в этом возникнет необходимость, то можно проверить, есть ли копия этой страницы на диске и можно просто выбросить страницу из памяти. Это избавит нас от затрат на переписывание страницы на диск.
Кэширование памяти swap действительно полезно только когда мы читаем данные из памяти swap и никогда в нее не делаем записи. Если мы выполняем запись на страницу, то копия на диске не будет соответствовать копии, находящейся в памяти. Если это случится, то мы должны произвести запись страницы на диск точно также, как мы делали это первый раз. Несмотря на то, что затраты на сохранение всей страницы больше, чем затраты на запись небольшого измененного кусочка, система будет работать лучше.
Поэтому, чтобы узнать, что память swap действительно используется, мы должны из значения SwapUsed вычесть значение SwapCached, вы можете найти эту информацию в /proc/meminfo.
Подкачка памяти
Когда приложению нужна память, а вся оперативная память полностью занята, то в распоряжении ядра есть два способа освободить память: оно может либо уменьшить размер дискового кэша в оперативной памяти, убирая устаревшие данные, либо оно может сбросить на диск в swap раздел несколько достаточно редко используемых порций (страниц) программы. Трудно предсказать, какой из способов будет более эффективным. Ядро, исходя из недавней истории действий в системе, делает попытку приблизительно отгадать на данный момент эффективность каждого из этих двух методов.
До ядер версии 2.6 у пользователя не было возможности влиять на эти оценки, так что могла возникнуть ситуации, когда ядро часто делало неправильный выбор, что приводило к пробуксовыванию и низкой производительности. В версии 2.6 ситуация с подкачкой памяти была изменена.
Подкачке памяти назначается значение от 0 до 100, которое изменяет баланс между подкачкой памяти приложений и освобождением кэш памяти. При значении 100 ядро всегда предпочтет найти неактивные страницы и сбросить их на диск в раздел swap; в других случаях этот сброс будет осуществляться в зависимости от того, сколько памяти занимает приложение и насколько трудно выпонять кэширование при поиске и удалении неактивных элементов.
По умолчанию для этого устанавливается значение 60. Значение 0 дает нечто близкое к старому поведению, когда приложения, которым нужна память, заставляли немного уменьшить размер кэша оперативной памяти. Для ноутбуков, для которых предпочтительно иметь диски с меньшей скоростью вращения, рекомендуется использовать значение 20 или меньше.
Заключение
В этой статье я поместил информацию, которая была мне полезной в моей работе в качестве системного администратора, и я надеюсь, что она может оказаться полезной и для вас.
Источник
Оптимизация Linux под нагрузку. Кэширование операций записи на диск.
Недавно на одном из виртуальных серверов столкнулся с проблемой долгой записи на диск. И под эту тему нашел интересную статью, в которой подробно рассмотрен вопрос функционирования кэширования операций записи на диск в Linux. Сегодня будет перевод этой статьи.
Кэширование в Linux
При записи данных на диск (любой программой) Linux кэширует эту информацию в области памяти, называемой Page Cache (страничный кэш). Информацию об этой области памяти можно посмотреть с помощью команд free, vmstat или top. Полную информацию об этой области памяти можно посмотреть в файле /proc/meminfo. Ниже приведен пример этой файла на сервере с 4-мя GB RAM:
Размер Page Cache показан в параметре «Cached», в данном примере он составляет 2,9 GB. При записи страниц в память размер параметра «Dirty» увеличивается. При начале непосредственно записи на диск будет увеличиваться параметр «Writeback» до тех пор, пока запись не закончится. Достаточно сложно увидеть параметр «Writeback» высоким, так как его значение увеличивается только во время опроса, когда операции ввода/вывода (I/O) поставлены в очередь, но еще не записаны на диск.
Linux обычно записывает данные из кэша на диск с помощью процесса pdflush. В любой момент в системе запущено от 2 до 8 потоков pdflush. В файле /proc/sys/vm/nr_pdflush_threads можно посмотреть сколько в данный момент активных потоков. Каждый раз все существующие потоки pdflush заняты по крайней мере 1 секунду. Новые потоки пытаются записать данные в свободные очереди устройств, таким образом, чтобы на каждое активное устройство был 1 поток сбрасывающий данные из кэша. Каждый раз по прошествии секунды без какой либо активности со стороны pdflush убирается 1 поток. В Linux можно настроить минимальное и максимальное количество pdflush потоков.
Настройка pdflush
Каждый поток pdflush контролируется несколькими параметрами в /proc/sys/vm:
- /proc/sys/vm/dirty_writeback_centisecs (default 500): в сотых долях секунд. Этот параметр означает как часто pdflush возобновляет работу для записи данных на диск. По умолчанию возобновляет работу 2 потока каждые 5 секунд.
Возможно недокументированное поведение, которое пресекает попытки уменьшения dirty_writeback_centisecs для более агрессивного кэширования данных процессом pdflush. Например, в ранних версиях ядра 2.6 Linux в файле mm/page-writeback.c код включал логику, которая описывалась «если запись на диск длится дольше, чем параметр dirty_writeback_centisecs, тогда нужно поставить интервал в 1 секунду». Эта логика описана только в коде ядра, и ее функционирование зависит от версии ядра Linux. Так как это не очень хорошо, поэтому вы будете защищены от уменьшения этого параметра. - /proc/sys/vm/dirty_expire_centiseconds (default 3000): в сотых долях секунд. Этот параметр указывает как долго данные могут находится в кэше, после чего должны быть записаны на диск. Значение по умолчанию очень долгое: 30 секунд. Это означает, что при нормальной работе до тех пор пока в кэш не запишется достаточно данных для вызова другого метода pdflush, Linux не будет записывать данные на диск, находящиеся в кэше менее 30 секунд.
- /proc/sys/vm/dirty_background_ratio (default 10): Максимальный процент оперативной памяти, который может быть заполнен страничным кэшем до записи данных на диск. Некоторые версии ядра Linux могут этот параметр устанавливать в 5%.
В большинстве документации этот параметр описывается как процент от общей оперативной памяти, но согласно исходным кодам ядра Linux это не так. Глядя на meminfo, параметр dirty_background_ratio расчитывается от величины MemFree + Cached — Mapped. Поэтому для нашей демонстрационной системы 10% составляет немного меньше, чем 250MB, но не 400MB.
Итого: Когда pdflush начинает запись?
В конфигурации по умолчанию, данные, записываемые на диск, находятся в памяти до тех пор пока:
- они дольше 30 секунд находятся в памяти;
- кэшированные страницы занимают более 10% рабочей памяти.
Если на сервере операции записи происходят часто, то однажды будет достигнут параметр dirty_background_ratio, и вы сможете увидеть, что вся запись на диск идет только через этот параметр не дожидаясь истечения параметра dirty_expire_centiseconds.
Процесс записи страниц
Параметр /proc/sys/vm/dirty_ratio (default 40): Максимальный процент общей оперативной памяти, который может быть выделен под страничный кэш, до того как pdflush будет писать данные на диск.
Примечание: Во время записи на диск все процессы блокируются на запись, не только тот который заполнил буфер на запись. Это может вызвать спровоцировать блокировку одним процессов всех операций вводы/вывода в системе. Провести этот
Рекомендации по оптимизации Linux для операций, требующий частой записи
Обычно люди при попытке увеличения производительности дисковой подсистемы сталкиваются с проблемой, что Linux буферизует слишком много информации сразу. Это особенно трудно для операций, требующий синхронизации файловой системы, использующих вызовы fsync. Если во время такого вызова в кэше много данных, то система может «подвиснуть» пока не закончится этот вызов.
Другая частая проблема происходит потому что слишком много требуется записать до того, как начнется запись на физический диск, операции ввода/вывода происходят чаще, чем при нормальной работе. Вы получите более долгие периоды, когда запись на диск не происходит, пока большой кэш не будет заполнен, после чего сработает один из триггеров pdflush и данные запишутся на максимальной скорости.
dirty_background_ratio: Основной инструмент настройки, обычно уменьшают этот параметр. Если ваша цель снизить количество данных, хранимое в кэше, так что данные будут писаться на диск постепенно, а не все сразу, то уменьшение этого параметра наиболее эффективный путь. Более приемлемо значение по умолчанию для систем имеющих много оперативной памяти и медленные диски.
dirty_ratio: Второй по значимости параметр для настройки. При значительном снижении этого параметра приложения, которые должны писать на диск, будут блокироваться все вместе.
dirty_expire_centisecs: Попробуйте уменьшить, но не сильно. Позволяет уменьшить время нахождения страниц в кэше до записи на диск, но это значительно снизит среднюю скорость записи на диск, т.к. это менее эффективно. Это особенно проявится на системах с медленными дисками.
Инструкция по настройке параметров
В файле /etc/sysctl.conf вносим, например:
После синхронизируем данные кэша и диска, очистим кэш и сохраним параметры.
Источник