Что такое модуль ядра линукс

Пишем простой модуль ядра Linux

Захват Золотого Кольца-0

Linux предоставляет мощный и обширный API для приложений, но иногда его недостаточно. Для взаимодействия с оборудованием или осуществления операций с доступом к привилегированной информации в системе нужен драйвер ядра.

Модуль ядра Linux — это скомпилированный двоичный код, который вставляется непосредственно в ядро Linux, работая в кольце 0, внутреннем и наименее защищённом кольце выполнения команд в процессоре x86–64. Здесь код исполняется совершенно без всяких проверок, но зато на невероятной скорости и с доступом к любым ресурсам системы.

Не для простых смертных

Написание модуля ядра Linux — занятие не для слабонервных. Изменяя ядро, вы рискуете потерять данные. В коде ядра нет стандартной защиты, как в обычных приложениях Linux. Если сделать ошибку, то повесите всю систему.

Ситуация ухудшается тем, что проблема необязательно проявляется сразу. Если модуль вешает систему сразу после загрузки, то это наилучший сценарий сбоя. Чем больше там кода, тем выше риск бесконечных циклов и утечек памяти. Если вы неосторожны, то проблемы станут постепенно нарастать по мере работы машины. В конце концов важные структуры данных и даже буфера могут быть перезаписаны.

Можно в основном забыть традиционные парадигмы разработки приложений. Кроме загрузки и выгрузки модуля, вы будете писать код, который реагирует на системные события, а не работает по последовательному шаблону. При работе с ядром вы пишете API, а не сами приложения.

У вас также нет доступа к стандартной библиотеке. Хотя ядро предоставляет некоторые функции вроде printk (которая служит заменой printf ) и kmalloc (работает похоже на malloc ), в основном вы остаётесь наедине с железом. Вдобавок, после выгрузки модуля следует полностью почистить за собой. Здесь нет сборки мусора.

Необходимые компоненты

Прежде чем начать, следует убедиться в наличии всех необходимых инструментов для работы. Самое главное, нужна машина под Linux. Знаю, это неожиданно! Хотя подойдёт любой дистрибутив Linux, в этом примере я использую Ubuntu 16.04 LTS, так что в случае использования других дистрибутивов может понадобиться слегка изменить команды установки.

Во-вторых, нужна или отдельная физическая машина, или виртуальная машина. Лично я предпочитаю работать на виртуальной машине, но выбирайте сами. Не советую использовать свою основную машину из-за потери данных, когда сделаете ошибку. Я говорю «когда», а не «если», потому что вы обязательно подвесите машину хотя бы несколько раз в процессе. Ваши последние изменения в коде могут ещё находиться в буфере записи в момент паники ядра, так что могут повредиться и ваши исходники. Тестирование в виртуальной машине устраняет эти риски.

И наконец, нужно хотя бы немного знать C. Рабочая среда C++ слишком велика для ядра, так что необходимо писать на чистом голом C. Для взаимодействия с оборудованием не помешает и некоторое знание ассемблера.

Установка среды разработки

На Ubuntu нужно запустить:

Устанавливаем самые важные инструменты разработки и заголовки ядра, необходимые для данного примера.

Примеры ниже предполагают, что вы работаете из-под обычного пользователя, а не рута, но что у вас есть привилегии sudo. Sudo необходима для загрузки модулей ядра, но мы хотим работать по возможности за пределами рута.

Начинаем

Приступим к написанию кода. Подготовим нашу среду:

Запустите любимый редактор (в моём случае это vim) и создайте файл lkm_example.c следующего содержания:

Мы сконструировали самый простой возможный модуль, рассмотрим подробнее самые важные его части:

  • В include перечислены файлы заголовков, необходимые для разработки ядра Linux.
  • В MODULE_LICENSE можно установить разные значения, в зависимости от лицензии модуля. Для просмотра полного списка запустите:
  • Мы устанавливаем init (загрузка) и exit (выгрузка) как статические функции, которые возвращают целые числа.
  • Обратите внимание на использование printk вместо printf . Также параметры printk отличаются от printf . Например, флаг KERN_INFO для объявления приоритета журналирования для конкретной строки указывается без запятой. Ядро разбирается с этими вещами внутри функции printk для экономии памяти стека.
  • В конце файла можно вызвать module_init и module_exit и указать функции загрузки и выгрузки. Это даёт возможность произвольного именования функций.
  • Впрочем, пока мы не можем скомпилировать этот файл. Нужен Makefile. Такого базового примера пока достаточно. Обратите внимание, что make очень привередлив к пробелам и табам, так что убедитесь, что используете табы вместо пробелов где положено.

    Если мы запускаем make , он должен успешно скомпилировать наш модуль. Результатом станет файл lkm_example.ko . Если выскакивают какие-то ошибки, проверьте, что кавычки в исходном коде установлены корректно, а не случайно в кодировке UTF-8.

    Теперь можно внедрить модуль и проверить его. Для этого запускаем:

    Читайте также:  Как установить docker linux mint

    Если всё нормально, то вы ничего не увидите. Функция printk обеспечивает выдачу не в консоль, а в журнал ядра. Для просмотра нужно запустить:

    Вы должны увидеть строку “Hello, World!” с меткой времени в начале. Это значит, что наш модуль ядра загрузился и успешно сделал запись в журнал ядра. Мы можем также проверить, что модуль ещё в памяти:

    Для удаления модуля запускаем:

    Если вы снова запустите dmesg, то увидите в журнале запись “Goodbye, World!”. Можно снова запустить lsmod и убедиться, что модуль выгрузился.

    Как видите, эта процедура тестирования слегка утомительна, но её можно автоматизировать, добавив:

    в конце Makefile, а потом запустив:

    для тестирования модуля и проверки выдачи в журнал ядра без необходимости запускать отдельные команды.

    Теперь у нас есть полностью функциональный, хотя и абсолютно тривиальный модуль ядра!

    Немного интереснее

    Копнём чуть глубже. Хотя модули ядра способны выполнять все виды задач, взаимодействие с приложениями — один из самых распространённых вариантов использования.

    Поскольку приложениям запрещено просматривать память в пространстве ядра, для взаимодействия с ними приходится использовать API. Хотя технически есть несколько способов такого взаимодействия, наиболее привычный — создание файла устройства.

    Вероятно, раньше вы уже имели дело с файлами устройств. Команды с упоминанием /dev/zero , /dev/null и тому подобного взаимодействуют с устройствами “zero” и “null”, которые возвращают ожидаемые значения.

    В нашем примере мы возвращаем “Hello, World”. Хотя это не особенно полезная функция для приложений, она всё равно демонстрирует процесс взаимодействия с приложением через файл устройства.

    Вот полный листинг:

    Тестирование улучшенного примера

    Теперь наш пример делает нечто большее, чем просто вывод сообщения при загрузке и выгрузке, так что понадобится менее строгая процедура тестирования. Изменим Makefile только для загрузки модуля, без его выгрузки.

    Теперь после запуска make test вы увидите выдачу старшего номера устройства. В нашем примере его автоматически присваивает ядро. Однако этот номер нужен для создания нового устройства.

    Возьмите номер, полученный в результате выполнения make test , и используйте его для создания файла устройства, чтобы можно было установить коммуникацию с нашим модулем ядра из пространства пользователя.

    (в этом примере замените MAJOR значением, полученным в результате выполнения make test или dmesg )

    Параметр c в команде mknod говорит mknod, что нам нужно создать файл символьного устройства.

    Теперь мы можем получить содержимое с устройства:

    или даже через команду dd :

    Вы также можете получить доступ к этому файлу из приложений. Это необязательно должны быть скомпилированные приложения — даже у скриптов Python, Ruby и PHP есть доступ к этим данным.

    Когда мы закончили с устройством, удаляем его и выгружаем модуль:

    Заключение

    Надеюсь, вам понравились наши шалости в пространстве ядра. Хотя показанные примеры примитивны, эти структуры можно использовать для создания собственных модулей, выполняющих очень сложные задачи.

    Просто помните, что в пространстве ядра всё под вашу ответственность. Там для вашего кода нет поддержки или второго шанса. Если делаете проект для клиента, заранее запланируйте двойное, если не тройное время на отладку. Код ядра должен быть идеален, насколько это возможно, чтобы гарантировать цельность и надёжность систем, на которых он запускается.

    Источник

    Модули ядра Linux

    Как вы знаете из статьи что такое ядро Linux, ядро является монолитным. Это значит, что весь исполняемый код сосредоточен в одном файле. Такая архитектура имеет некоторые недостатки, например, невозможность установки новых драйверов без пересборки ядра. Но разработчики нашли решение и этой проблеме, добавив систему модулей.

    Ядро Linux позволяет драйверам оборудования, файловых систем, и некоторым другим компонентам быть скомпилированными отдельно — как модули, а не как часть самого ядра. Таким образом, вы можете обновлять драйвера не пересобирая ядро, а также динамически расширять его функциональность. А еще это значит, что вы можете включить в ядре только самое необходимое, а все остальное подключать с помощью модулей. Это очень просто.

    В этой статье мы рассмотрим модули ядра Linux, основы работы с ними, просмотр уже загруженных модулей, загрузку, установку и отключение модулей. А также полное отключение, добавление в черный список и добавление новых модулей ядра.

    Основы

    Модули ядра Linux собираются только под определенную версию ядра, есть способ запуска модуля независимо от версии ядра, если они совместимы с помощью dkms, но об этом мы поговорим позже.

    Находятся все модули в папке /lib/modules/. Учитывая, что модули рассчитаны только для определенной версии ядра, то в этой папке создается отдельная подпапка, для каждой установленной в системе версии ядра. В этой папке находятся сами модули и дополнительные конфигурационные файлы, модули отсортированы по категориям, в зависимости от назначения например:

    Перед тем как переходить к практике, давайте коротко рассмотрим основные команды для управления модулями.

    • lsmod — посмотреть загруженные модули
    • modinfo — информация о модуле
    • insmod — загрузить модуль
    • rmmod — удалить модуль

    Работа с модулями ядра Linux выполняется, в основном, с помощью этих команд, но могут использовать и другие.

    Читайте также:  Antimalware service executable отключить windows 10 2020

    Все модули

    Такая задача возникает нечасто, но если вы хотите посмотреть все установленные модули ядра Linux в системе, делается очень просто. Все модули расположены в папке /lib/modules, а поэтому очень просто вычислить их все одной командой, или даже просто зайти в папку файловым менеджером и посмотреть.

    В Ubuntu команда будет выглядеть вот так:

    Можно смастерить такую конструкцию с помощью find:

    Можем искать только для текущего ядра:

    Также, все модули записаны в конфигурационном файле /lib/modules/modules.aliases, поэтому мы можем просто посмотреть его содержимое:

    Если хотим проверить установлен ли определенный модуль ядра Linux, отфильтруем вывод любой из команд с помощью grep:

    Что загружено?

    Все информация о загруженных модулях хранится в файле /proc/modules, мы можем ее вывести командой:

    Но для этого дела есть более цивилизованные методы. Это утилита lsmod и modinfo. Чтобы посмотреть загруженные модули ядра linux выполните:

    Удобно проверять загружен ли модуль с помощью grep:

    А более подробную информацию о каждом модуле можно получить с помощью утилиты modinfo:

    Здесь вы можете увидеть файл модуля, его лицензию, автора и зависимости. Зависимости — это те модули, которые должны быть загружены для его нормальной работы. К сожалению, не для всех модулей доступно нормальное описание, но вы можете попробовать посмотреть описание зависимостей модуля.

    Запуск модулей ядра

    Загрузить модуль ядра Linux можно с помощью команд modprobe или insmod.

    Например, загрузим модуль vboxdrv

    Чтобы загрузить модуль ядра linux с помощью insmod необходимо передать адрес файла модуля:

    Напоминаю, что его можно узнать с помощью команды modinfo. Запуск модуля ядра Linux предпочтительно выполнять с помощью modprobe, поскольку эта команда не только находит файл модуля в файловой системе, но и загружает все его зависимости.

    Удаление модулей ядра

    Здесь аналогично две команды — modprobe, позволяет удалить модуль если ей передать опцию -r, а также есть команда rmmod. Начнем с modprobe:

    Другая команда в этом случае выглядит немного проще:

    Если вы получили ошибку во время выгрузки модуля, значит он еще используется другими модулями, и сначала нужно выгрузить их. Правильно отработавшая команда не должна ничего возвращать.

    Блокирование загрузки модулей

    Иногда, во время загрузки системы для используемых нами устройств, загружаются не те модули ядра Linux, они либо не поддерживают нужную функциональность либо конфликтуют с другими модулями. Ярким примером можно назвать загрузку драйвера b43 вместо brcmsmac для беспроводных адаптеров Broadcom. Чтобы решить эту проблему вы можете добавлять модули в черный список. Для этого достаточно добавить одну строчку в файл /etc/modprobe.d/blacklist.conf:

    Этот код добавит в черный список модуль b43.

    Установка модулей ядра Linux

    Собранные для этой версии ядра модули вы можете просто скопировать в нужную папку, собственно, мы так и поступаем, когда собираем ядро из исходников. Но с проприетарными драйверами и другими внешними драйверами, не поставляемыми в комплекте с ядром дело обстоит иначе. Эти модули поддерживают несколько версий ядра, но для их установки используется специальная технология — DKMS (Dynamic Kernel Module Support). Причем модуль, установленный таким образом один раз, будет пересобираться для каждой новой версии ядра автоматически.

    Дальше рассмотрим установку модуля Intel NIC — ixgbe. Как вы убедитесь установка модулей ядра выполняется не так уж сложно. Сначала скачаем исходники и скопируем их в нужную папку:

    Источник

    Что такое ядро Linux

    Ядро Linux содержит более 13 миллионов строк кода и является одним из самых крупных проектов с открытым исходным кодом в мире. Так что такое ядро Linux и для чего оно используется?

    Что такое ядро Linux?

    Ядро — это самый низкий уровень программного обеспечения, которое взаимодействует с аппаратными средствами компьютера. Оно отвечает за взаимодействие всех приложений, работающих в пространстве пользователя вплоть до физического оборудования. Также позволяет процессам, известным как сервисы получать информацию друг от друга с помощью системы IPC.

    Виды и версии ядра

    Что такое ядро Linux вы уже знаете, но какие вообще бывают виды ядер? Есть различные способы и архитектурные соображения при создании ядер с нуля. Большинство ядер могут быть одного из трех типов: монолитное ядро, микроядро, и гибрид. Ядро Linux представляет собой монолитное ядро, в то время как ядра Windows и OS X гибридные. Давайте сделаем обзор этих трех видов ядер.

    Микроядро

    Микроядра реализуют подход, в котором они управляют только тем, чем должны: процессором, памятью и IPC. Практически все остальное в компьютере рассматривается как аксессуары и обрабатывается в режиме пользователя. Микроядра имеют преимущество в переносимости, они могут использоваться на другом оборудовании, и даже другой операционной системе, до тех пор, пока ОС пытается получить доступ к аппаратному обеспечению совместимым образом.

    Микроядра также имеют очень маленький размер и более безопасны, поскольку большинство процессов выполняются в режиме пользователя с минимальными привилегиями.

    Плюсы

    • Портативность
    • Небольшой размер
    • Низкое потребление памяти
    • Безопасность

    Минусы

    • Аппаратные средства доступны через драйверы
    • Аппаратные средства работают медленнее потому что драйверы работают в пользовательском режиме
    • Процессы должны ждать свою очередь чтобы получить информацию
    • Процессы не могут получить доступ к другим процессам не ожидая
    Читайте также:  Astra linux список групп

    Монолитное ядро

    Монолитные ядра противоположны микроядрам, потому что они охватывают не только процессор, память и IPC, но и включают в себя такие вещи, как драйверы устройств, управление файловой системой, систему ввода-вывода. Монолитные ядра дают лучший доступ к оборудованию и реализуют лучшую многозадачность, потому что если программе нужно получить информацию из памяти или другого процесса, ей не придется ждать в очереди. Но это и может вызвать некоторые проблемы, потому что много вещей выполняются в режиме суперпользователя. И это может принести вред системе при неправильном поведении.

    Плюсы:

    • Более прямой доступ к аппаратным средствам
    • Проще обмен данными между процессами
    • Процессы реагируют быстрее

    Минусы:

    • Большой размер
    • Занимает много оперативной памяти
    • Менее безопасно

    Гибридное ядро

    Гибридные ядра могут выбирать с чем нужно работать в пользовательском режиме, а что в пространстве ядра. Часто драйвера устройств и файловых систем находятся в пользовательском пространстве, а IPC и системные вызовы в пространстве ядра. Это решение берет все лучшее из обоих предыдущих, но требует больше работы от производителей оборудования. Поскольку вся ответственность за драйвера теперь лежит на них.

    Плюсы

    • Возможность выбора того что будет работать в пространстве ядра и пользователя
    • Меньше по размеру чем монолитное ядро
    • Более гибкое

    Минусы

    • Может работать медленнее
    • Драйверы устройств выпускаются производителями

    Где хранятся файлы ядра?

    Где находится ядро Linux? Файлы ядра Ubuntu или любого другого Linux-дистрибутива находятся в папке /boot и называются vmlinuz-версия. Название vmlinuz походит с эпохи Unix. В шестидесятых годах ядра привыкли называть просто Unix, в 90-х годах Linux ядра тоже назывались — Linux.

    Когда для облегчения многозадачности была разработана виртуальная память, перед именем файла появились буквы vm, чтобы показать что ядро поддерживает эту технологию. Некоторое время ядро называлось vmlinux, но потом образ перестал помещаться в память начальной загрузки, и был сжат. После этого последняя буква x была изменена на z, чтобы показать что использовалось сжатие zlib. Не всегда используется именно это сжатие, иногда можно встретить LZMA или BZIP2, поэтому некоторые ядра называют просто zImage.

    Нумерация версии состоит из трех цифр, номер версии ядра Linux, номер вашей версии и патчи или исправления.

    В паке /boot можно найти не только ядро Linux, такие файлы, как initrd.img и system.map. Initrd используется в качестве небольшого виртуального диска, который извлекает и выполняет фактический файл ядра. Файл System.map используется для управления памятью, пока еще ядро не загрузилось, а конфигурационные файлы могут указывать какие модули ядра включены в образ ядра при сборке.

    Архитектура ядра Linux

    Так как ядро Linux имеет монолитную структуру, оно занимает больше и намного сложнее других типов ядер. Эта конструктивная особенность привлекла много споров в первые дни Linux и до сих пор несет некоторые конструктивные недостатки присущие монолитным ядрам.

    Но чтобы обойти эти недостатки разработчики ядра Linux сделали одну вещь — модули ядра, которые могут быть загружены во время выполнения. Это значит что вы можете добавлять и удалять компоненты ядра на лету. Все может выйти за рамки добавления функциональных возможностей аппаратных средств, вы можете запускать процессы сервера, подключать виртуализацию, а также полностью заменить ядро без перезагрузки.

    Представьте себе возможность установить пакет обновлений Windows без необходимости постоянных перезагрузок.

    Модули ядра

    Что, если бы Windows уже имела все нужные драйвера по умолчанию, а вы лишь могли включить те, которые вам нужны? Именно такой принцип реализуют модули ядра Linux. Модули ядра также известные как загружаемые модули (LKM), имеют важное значение для поддержки функционирования ядра со всеми аппаратными средствами, не расходуя всю оперативную память.

    Модуль расширяет функциональные возможности базового ядра для устройств, файловых систем, системных вызовов. Загружаемые модули имеют расширение .ko и обычно хранятся в каталоге /lib/modules/. Благодаря модульной природе вы можете очень просто настроить ядро путем установки и загрузки модулей. Автоматическую загрузку или выгрузку модулей можно настроить в конфигурационных файлах или выгружать и загружать на лету, с помощью специальных команд.

    Сторонние, проприетарные модули с закрытым исходным кодом доступны в некоторых дистрибутивах, таких как Ubuntu, но они не поставляются по умолчанию, и их нужно устанавливать вручную. Например, разработчики видеодрайвера NVIDIA не предоставляют исходный код, но вместо этого они собрали собственные модули в формате .ko. Хотя эти модули и кажутся свободными, они несвободны. Поэтому они и не включены во многие дистрибутивы по умолчанию. Разработчики считают что не нужно загрязнять ядро несвободным программным обеспечением.

    Теперь вы ближе к ответу на вопрос что такое ядро Linux. Ядро не магия. Оно очень необходимо для работы любого компьютера. Ядро Linux отличается от OS X и Windows, поскольку оно включает в себя все драйверы и делает много вещей поддерживаемых из коробки. Теперь вы знаете немного больше о том, как работает ваше программное обеспечение и какие файлы для этого используются.

    Источник

    Оцените статью