Я хочу рассказать об удивительном событии, о котором я узнал пару месяцев назад. Оказывается, одна популярная python-утилита уже более года распространяется в виде бинарных файлов, которые компилируются прямо из python. И речь не про банальную упаковку каким-нибудь PyInstaller-ом, а про честную Ahead-of-time компиляцию целого python-пакета. Если вы удивлены так же как и я, добро пожаловать под кат.
Объясню, почему я считаю это событие по-настоящему удивительным. Существует два вида компиляции: Ahead-of-time (AOT), когда весь код компилируется до запуска программы и Just in time compiler (JIT), когда непосредственно компиляция программы под требуемую архитектуру процессора осуществляется во время ее выполнения. Во втором случае первоначальный запуск программы осуществляется виртуальной машиной или интерпретатором.
Если сгруппировать популярные языки программирования по типу компиляции, то получим следующий список:
Ahead-of-time compiler: C, C++, Rust, Kotlin, Nim, D, Go, Dart;
Just in time compiler: Lua, С#, Groovy, Dart.
В python из коробки нет JIT компилятора, но отдельные библиотеки, предоставляющие такую возможность, существуют давно
Смотря на эту таблицу, можно заметить определенную закономерность: статически типизированные языки находятся в обеих строках. Некоторые даже могут распространяться с двумя версиями компиляторов: Kotlin может исполняться как с JIT JavaVM, так и с AOT Kotlin/Native. То же самое можно сказать про Dart (версии 2). A вот динамически типизированные языки компилируются только JIT-ом, что впрочем вполне логично.
При запуске виртуальная машина сначала накапливает информацию о типах переменных, затем после накопления статистики, запускается компиляция наиболее нагруженных частей программы. Виртуальная машина отслеживает типы аргументов и переключает выполнение программы между уже скомпилированными и не скомпилированными участками кода в зависимости от текущих значений переменных.
При использовании JIT компиляции типы не очень то и нужны, ведь информация о типах собирается во время работы программы. Поэтому все популярные динамически типизированные языки программирования распространяются именно с JIT компилятором. Но как быть с AOT компиляцией кода, в котором нет типов? Меня очень заинтересовал этот вопрос, и я полез разбираться.
Итак, вернемся к утилите, о которой говорилось в начале статьи. Речь про mypy — наиболее популярный синтаксический анализатор python-кода.
С апреля 2019 года эта утилита распространяется в скомпилированном виде, о чем рассказывается в блоге проекта. А для компиляции используется еще одна утилита от тех же авторов — mypyc. Погуглив немного, я нашел достаточно большую статью “Путь к проверке типов 4 миллионов строк Python-кода” про становление и развитие mypy (на Хабре доступен перевод: часть 1, часть 2, часть 3). Там немного рассказывается о целях создания mypyc: столкнувшись с недостаточной производительностью mypy при разборе крупных python-проектов в Dropbox, разработчики добавили кеширование результатов проверки кода, а затем возможность запуска утилиты как сервиса. Но исчерпав очевидные возможности оптимизации, столкнулись с выбором: переписать все на go или на cython. В результате проект пошел по третьему пути — написание своего AOT python-компилятора.
Дело в том, что для правильной работы mypy и так необходимо построить то же синтаксическое дерево, что и интерпретатору во время исполнения кода. То есть mypy уже “понимает” python, но использует эту информацию только для статистического анализа, а вот mypyc может преобразовывать эту информацию в полноценный бинарный код.
Думаю тут многие решили, что разобрались в вопросе того, как скомпилировать динамически типизированный python-код. Python c версии 3.4 поддерживает аннотацию типов, а mypy как раз и используется для проверки корректности аннотаций. Получается, python как бы уже и не динамически типизированный язык, что позволяет применить AOT компиляцию. Но загвоздка в том, что mypyc может компилировать и неаннотированный код!
Для примера рассмотрим функцию сортировки “пузырьком”. Файл lib.py:
У типов нет аннотаций, но это не мешает mypyc ее скомпилировать. Чтобы запустить компиляцию, нужно установить mypyc. Он не распространяется отдельным пакетом, но если у вас установлен mypy, то и mypyc уже присутствует в системе! Запускаем mypyc, следующей командой:
После запуска в проекте будут созданы следующие директории:
.mypy_cache — mypy кэш, mypyc неявно запускает mypy для разбора программы и получения AST;
build — артефакты сборки;
lib.cpython-38-x86_64-linux-gnu.so — собственно сборка под целевую платформу. Данный файл представляет из себя готовый CPython Extension.
CPython Extension — встроенный в CPython механизм взаимодействия с кодом, написанным на С/C++. По сути это динамическая библиотека, которую CPython умеет загружать при импорте нашего модуля lib. Через данный механизм осуществляется взаимодействие с модулями, написанными на python.
Компиляция состоит из двух фаз:
Компиляция python кода в код С;
Компиляция С в бинарный .so файл, для этого mypyc сам запускает gcc (gcc и python-dev также должен быть установлены).
Файл lib.cpython-38-x86_64-linux-gnu.so имеет преимущество перед lib.py при импорте на соответствующей платформе, и исполняться теперь будет именно он.
Ну и давайте сравним производительность модуля до и после компиляции. Для этого создадим файл main.py с кодом запуска сортировки:
Получим примерно следующие результаты:
Ожидаемо скомпилированный код оказался быстрее (
в 2 раза), что неплохо, так как для такого результата нам потребовалось запустить лишь одну команду. Хотя от скомпилированного кода привычно ожидаешь большего.
Чтобы ответить на вопрос “как компилируется динамически типизированный код”, придется заглянуть в представление этой функции на С. Но разобрать ее будет достаточно сложно, поэтому давайте попробуем разобраться с примером попроще.
Скомпилируем функцию суммы от двух переменных:
Перед запуском компиляции я ожидал увидеть примерно следующий код на С:
Однако результат оказался cущественно иным (код немного упрощен):
Рассмотрим, что тут происходит. Во-первых, так как мы не знаем типы входных переменных, функция в качестве аргументов принимает указатели на объекты класса PyObject, по сути это внутренние CPython структуры. Далее компилятор должен сложить эти объекты, но как, если настоящие типы аргументов неизвестны во время компиляции: это могут быть целые числа, числа с плавающей точкой, списки и вообще не факт, что аргументы можно складывать, тогда нужно вернуть ошибку. И что же делает в этом случае mypyc?
Как оказалось, все очень просто: он просит CPython самостоятельно сложить эти аргументы. Функция PyNumber_Add — это внутренняя функция СPython, которая доступна из расширения, ведь СPython отлично умеет складывать свои объекты.
Взаимодействие CPython c Extension можно изобразить следующим диалогом:
— А посчитай-ка мне функцию sum для A, B;
— Хорошо, но скажи сначала, сколько будет A + B;
— Хорошо, тогда держи ответ — С.
Вот такой нехитрый прием используется при компиляции динамического кода: компилируем все, что можем, а все остальное отдаем интерпретатору.
Конечно, данный пример выглядит гротескно, но даже несмотря на такую неэффективность, mypyc позволяет добиться существенного прироста производительности, как в примере с сортировкой.
Итак, у нас получилось скомпилировать python, и мы разобрались с тем, как это работает, а также увидели определенную неэффективность полученного результата. Теперь попробуем разобраться в том, как можно это улучшить. Очевидно, что основная проблема заключается во множественном взаимодействии CPython — Extension. Но как это побороть?
Для повышения эффективности, нужно, чтобы расширение, получив управление, могло как можно дольше оставлять его у себя без обращения к CPython. Если бы у mypyc была информация о типах переменных, то он бы мог самостоятельно произвести сложение без возврата управления. Но вывести типы самостоятельно mypyc не может, он даже не контролирует код, из которого осуществляется вызов функции sum. Соответственно, ему нужно помочь, проставив аннотации вручную. Давайте посмотрим, как поменяется результирующая С-функция, если добавить аннотацию типов:
Скомпилированный результат на C (немного очищенный):
Главное, что можно заметить: функция существенно поменялась, а значит, компилятор реагирует на появление аннотации. Давайте разбираться, что изменилось.
Теперь CPyDef_sum получает на вход не указатели на PyObject, а структуры CPyTagged. Это все еще не int, но уже и не часть CPython, а часть библиотек mypyc, которую он добавляет в скомпилированный код расширения. Для ее инициализации в рантайме сначала проверяется тип, так что теперь функция sum работает только с int и обойти аннотацию не получится.
Далее происходит вызов CPyTaggetAdd вместо PyNumber_Add. Это уже внутренняя функция mypyc. Если заглянуть в код CPyTaggetAdd, то можно понять, что там происходит проверка диапазонов значений a и b, и если они укладываются в int, то происходит простое суммирование, а также проверка на переполнение:
Таким образом, наш диалог CPython — Extension превращается из абсурдного в нормальный:
— А посчитай-ка мне функцию sum для A, B;
— Хорошо, тогда держи ответ С.
Настало время вернуться к функции сортировки, чтобы провести замеры скорости. Изменим начальную функцию, добавив аннотацию для data:
Скомпилируем результат и замерим время сортировки:
Источник
All Linux distributions come with latest stable python release. Yet, if you want to try out new python for its elegant new features. You can compile and install it side by existing python.
Steps to Install Python from source
It is recommended not to replace python that comes with OS. You may mess up with internals since many OS internals (commands) rely on default python instead install side by existing python using “make altinstall”
You can choose to download python source at “Python Source Release” or you can proceed with git with luxury to switch between any version you want.
switch to cloned directory using “cd cpython”
You can list all python releases (tags) using command “git tag“
Following command will help to list last 20 release in descending order
For the sake of this article I’m switching to release v3.8.0 using “git checkout” command
You can verify your current branch(version) switched to by using command “git branch“
Before proceeding further, consider updating package information and upgrading system
Above commands may take a while. Wait for them to complete to proceed further.
Install tools required to build and install python
Compile Python using following commands
To install python with shared libraries run ” ./configure –enable-shared “.
./configure script takes another optional command line options–prefix. It can be used to set where final built files will be placed(installed).
Example: ./configure –prefix=/opt/python3.8
If –prefix option is used with ./configure script. It is not necessary to use “make altinstall” instead you can run “make install“
After command make you may see optional modules which are not built with following message
If you think, you need any of the modules mentioned above are required. Don’t hesitate to install those dependencies and then repeat “./configure; make” followed by “make install” if everything goes well with make.
Install dependencies(development files) to build python optional modules mentioned in the above output message of make command
Once above development packages are installed. Run “make” to build(compile) python with dependencies installed followed by “make install” .
Use make altinstall if you would like to install python with out replacing default python if –prefix option is not used with ./configure script
If –prefix option is specified to ./configure script, built files will placed in that specified directory else files will be placed inside /usr/local by default. That is, inside “/usr/local/bin”, “usr/local/lib” etc.
You can find python command location using command “which python3.8”. Note: replace python3.8 with the version you have installed
Once python is compiled and installed. We can access the configuration options that python was compiled with using module called “sysconfig“
Following python code will print configuration options that python was compiled with
On the other hand you can also use the command “pyton3.8-config” (python*-config) to get information about python configuration
If you build and install python with ./configure’s –prefix option, all files will be placed in single directory specified with folders inside as follows,
Источник