Dns name from ip windows

Dns name from ip windows

    Open up the command prompt (In Windows, you can use WINDOWS KEY+R to open Run dialogue box and type cmd)
    (note: Use your up and down arrow keys to access recent commands you have entered in the command line.)

To see your current DNS settings, type ipconfig /displaydns and press Enter.

To delete the entries, type ipconfig /flushdns and press Enter.

To see your DNS settings again, type ipconfig /displaydns and press Enter.

You should see blank records or you might get the message «Could not display the DNS Resolver Cache.»

To perform a DNS lookup, type ping scisweb.ulster.ac.uk and press Enter.

To see your DNS settings again, type ipconfig /displaydns and press Enter.

You should see a DNS record for scisweb.ulster.ac.uk that includes the IP address and other information. Another field in the DNS cache is a TTL value, which is different from the TTL in an IP packet. This DNS TTL value is sent by the DNS server maintaining the scisweb.ulster.ac.uk record. It is measured in seconds and tells your DNS client how long to cache the DNS record as a safeguard against clients holding on to DNS records whose IP addresses might have changed.

To open your computer’s Hosts file, run Notepad as administrator. Easiest way is to press and then type notepad in windows 8 splashscreen, select notepad and right click and then select «Run as administrator» in bottom taskbar area of windows 8. In the Open dialog box, navigate to C:\Windows\System32\Drivers\Etc. In the File type drop-down list, click All Files. Double-click the hosts file to open it.

You should now have a hosts file open with various settings.

After the last line in the file, type 193.61.191.104 university, and then save the file and exit Notepad.

At the command prompt, type ipconfig /displaydns and press Enter to see that the entry is in your DNS cache.

Type ping university and press Enter.

Delete the DNS cache again by typing ipconfig /flushdns and press Enter.

Display your DNS cache by typing ipconfig /displaydns and press Enter.

Notice that the university entry remains in the cache because the Hosts file data always stays in the cache.

Type nslookup scisweb.ulster.ac.uk and press Enter.

Your DNS server’s name and IP address are displayed, along with the name and IP address of www.ulster.ac.uk. You use Nslookup to look up a host’s IP address without actually communicating with it.

Type nslookup and press Enter.

You should now have entered Nslookup’s interactive mode. You should see an arrow prompt.

Type www.google.com and press Enter.

Notice that more than one address is returned along with one or more aliases (other names that www.google.com goes by).

Type www.google.com again (or press the up arrow to repeat the last line you typed) and press Enter.

You should see the IP addresses returned in a different order. (If you don’t, keep trying, and the order will change.)

The www.google.com page can be reached by a number of different IP addresses, and the addresses are returned in a different order so that a different server is used each time, which is called load balancing.

Nslookup is also used to do reverse lookups, in which the IP address is given and the hostname is returned.

If you are ever concerned that your DNS server is not working correctly, you can test it with Nslookup and compare the results of your DNS server with the results from another server, such as Google’s.

Reverse ip, find domain names on ip address

How and from where websites like this http://www.yougetsignal.com/tools/web-sites-on-web-server/ are getting this information from? How can I develop such tool?

6 Answers 6

You can use nslookup on the IP. Reverse DNS is defined with the .in-addr.arpa domain.

yields 123.21.2.3 , and then you do:

this will ask 3.2.21.123.in-addr.arpa and yield the domain name (if there is one defined for reverse DNS).

You can use ping -a or nbtstat -A

They’re just trawling lists of web sites, and recording the resulting IP addresses in a database.

All you’re seeing is the reverse mapping of that list. It’s not guaranteed to be a full list (indeed more often than not it won’t be) because it’s impossible to learn every possible web site address.

windows user can just using the simple nslookup command

if you want get more info, please check the following answer!

From about section of Reverse IP Domain Check tool on yougetsignal:

A reverse IP domain check takes a domain name or IP address pointing to a web server and searches for other sites known to be hosted on that same web server. Data is gathered from search engine results, which are not guaranteed to be complete.

DNS name from IP address

I need to create a list of IP addresses and DNS names. I am trying to get DNS names from IP addresses. I have tried two ways:

  1. try / catch but it ends afterwards.
  2. Without and it just outputs DNS names that I can’t relate to the IP addresses.

Here’s what I have so far:

5 Answers 5

Try this solution:

We create a objects, that have the IPaddress in it and a hostname n/a if it cannot be resolved. Then, the object gets exported into the file. You’ll get something like:

This uses a workflow so it can do parallel foreach

You might want to try the other solutions offered here, but here are some things you might want to think about.

First, I’d recommend not putting the try<>catch<> around the whole of the first command. If you are looping through data and just one of them causes an exception, you risk not completing the task. Put the try<>catch<> around just the «risky» line of code:

When you catch the exception, you only write to the text file in the case that «the requested name is valid» (do you mean invalid?). You never write anything to the file otherwise. Thus, going back to your original code:

  • IF there is an exception caused by ANY of the IP addresses
  • AND the exception is NOT «the requested name is valid» (which I think might be a typo?)
  • THEN no error gets written to the file and the script ends without necessarily completing all the IP addresses.
Читайте также:  Драйвера сата для windows

You use two methods to write to the file: >> and Out-File . Probably better to use the PowerShell cmdlet but with the -Append switch to ensure you append to the end of the file:

@restless1987 has suggested a way to ensure you write both the IP address and the hostname (if determined) to the output file. I’d have a look at that to work out what is going on.

My final tip would be to be wary of reading in from .txt files with Get-Content . They often have trailing (blank) lines and you might want to try to ignore such blanks. Probably not a big issue in this case as it will just mean a failed DNS attempt, but I have seen such things wreak havoc on every mailbox in a (very) large company when used with other commands.

DNS сервер BIND (теория)

Основная цель DNS — это отображение доменных имен в IP адреса и наоборот — IP в DNS. В статье я рассмотрю работу DNS сервера BIND (Berkeley Internet Name Domain, ранее: Berkeley Internet Name Daemon), как сАмого (не побоюсь этого слова) распространенного. BIND входит в состав любого дистрибутива UNIX. Основу BIND составляет демон named, который для своей работы использует порт UDP/53 и для некоторых запросов TCP/53.

Основные понятия Domain Name System

Исторически, до появления доменной системы имен роль инструмента разрешения символьных имен в IP выполнял файл /etc/hosts, который и в настоящее время играет далеко не последнюю роль в данном деле. Но с ростом количества хостов в глобальной сети, отслеживать и обслуживать базу имен на всех хостах стало нереально затруднительно. В результате придумали DNS, представляющую собой иерархическую, распределенную систему доменных зон. Давайте рассмотрим структуру Системы Доменных Имён на иллюстрации:


Доменная структура DNS представляет собой древовидную иерархию, состоящую из узлов, зон, доменов, поддоменов и др. элементов, о которых ниже пойдет речь. «Вершиной» доменной структуры является корневая зона. Настройки корневой зоны расположены на множестве серверов/зеркал, размещенных по всему миру и содержат информацию о всех серверах корневой зоны, а так же отвечающих за домены первого уровня (ru, net, org и др). Информация о серверах корневой зоны расположена на данном сайте корневых серверов. Настройки корневой зоны всегда доступны тут. Серверы корневой зоны обрабатывают и отвечают на запросы, выдавая информацию только о доменах первого уровня (то есть отвечают на любые запросы, как на нерекурсивные)! Итак, уже много раз повторилось слово зона. Пора этот термин объяснить.

Зона — это любая часть дерева системы доменных имен, размещаемая как единое целое на некотором DNS-сервере. Зону, для бОльшего понимания, можно назвать «зоной ответственности». Целью выделения части дерева в отдельную зону является передача ответственности (Делегирование) за эту ветвь другому лицу или организации. На иллюстрации, примеры зон выделены синим градиентом (зона name., зона k-max.name. со всем подчиненными ресурсами, www.openoffice.org со всем подчиненными поддоменами и ресурсами). На иллюстрации выделены не все зоны, а лишь некоторые для общего понимания и представления. В каждой зоне имеется, по крайней мере, один авторитетный сервер DNS, который хранит ВСЮ информацию о зоне, за которую он отвечает.

Домен — это именованная ветвь или поддерево в дереве имен DNS, то есть это определенный узел, включающий в себя все подчиненные узлы. Следующая цитата из книги Linux Network Administrators Guide хорошо проясняет картину относительно разницы между зоной и доменом:

Таким образом, пространство имен раздроблено на зоны ( zones), каждая из которых управляется своим доменом. Обратите внимание на различие между зоной (zone) и доменом (domain): домен groucho.edu затрагивает все машины в университете Groucho Marx, в то время как зона groucho.edu включает только хосты, которые работают в непосредственно компьютерном центре, например в отделе математики. Хост в отделе физики принадлежат другой зоне, а именно physics.groucho.edu.

Каждый узел в иерархии DNS отделен от своего родителя точкой. Если провести аналогию с файловой системой Linux, система доменных имен имеет похожую структуру, за тем исключением, что разделитель в файловой системе — слэш, а в DNS — точка. А так же DNS адрес читается справа налево (от корневого домена к имени хоста) в отличии от пути в файловой системе Linux. Доменное имя начинается с точки (корневого домена) и проходит через домены первого, второго и если нужно третьего и т.д. уровней и завершается именем хоста. Т.о. доменное имя полностью отражает структуру иерархии DNS. Часто (я бы сказал — всегда в повседневной жизни), последняя точка (обозначение корневого домена) в доменном имени опускается (то есть в браузере мы вводим не k-max.name., а k-max.name). Итак, разобрав структуру доменного имени, мы незаметно подошли к понятию FQDN.

FQDN (англ. Fully Qualifed Domain Name, полностью определённое имя домена) — это имя домена, однозначно определяющее доменное имя и включающее в себя имена всех родительских доменов иерархии DNS, в том числе и корневого. Своеобразный аналог абсолютного пути в файловой системе. Давайте разберем вышесказанное на примере имени домена mail.k-max.name:

Различие между FQDN и обычным доменным (неFQDN) именем появляется при именовании доменов второго, третьего (и т. д.) уровня. Для получения FQDN требуется обязательно указать в доменном имени домены более высокого уровня (например, mail является доменным именем, однако FQDN имя выглядит как mail.k-max.name.). Максимальный размер FQDN — 255 байт, с ограничением в 63 байта на каждое имя домена.

Поддомены, коротко говоря, это — подчиненные домены. По большому счету, все домены в интернете являются подчиненными за исключением корневого. Например домен k-max является поддоменом домена name, а name, в свою очередь — поддоменом корневого домена.

Итак, на схеме выше мы рассмотрели корневой домен, следующим в иерархии идут домены первого/верхнего уровня, они же TLD, они же Top-Level Domain. К данным доменам относятся национальные домены (ru., ua. и др) и общие домены (com., net., и др). Существуют так же специализированные домены, которые не опубликованы в системе DNS, но используются программами (домен .onion используется анонимной сетью Tor для перехвата и последующей маршрутизации обращений к скрытым сервисам этой сети). Еще есть т.н. зарезервированные доменные имена, определенные в RFC 2606 (Reserved Top Level DNS Names — Зарезервированные имена доменов верхнего уровня) определяет названия доменов, которые следует использовать в качестве примеров (например, в документации), а также для тестирования. К таким именам относятся например example.com, example.org и example.net, а также test, invalid и др. Ниже по иерархии, как видно, идут домены третьего уровня и т.д. Заканчивается доменная иерархия — именами хостов, которые задаются соответствующими ресурсными записями или хостовыми записями.

Ресурсные записи

Ресурсная запись — это то, собственно ради чего в конечном счете и существует DNS. Ресурсная запись — это единица хранения и передачи информации в DNS. Каждая такая запись несет в себе информацию соответствия какого-то имени и служебной информации в DNS, например соответствие имени домена — IP адреса.

Читайте также:  Pdf creator ��� mac os
Запись ресурса состоит из следующих полей:
  • SRV (server selection) — указывают на сервера, обеспечивающие работу тех или иных служб в данном домене (например Jabber и Active Directory).
  • Давайте рассмотрим, что есть Делегирование. Делегирование (корректнее сказать делегирование ответственности) — это операция передачи ответственности за часть дерева доменных имен (зону) другому лицу или организации. За счет делегирования, в DNS обеспечивается распределенность администрирования и хранения зон. Технически, делегирование заключается в выделении какой-либо части дерева в отдельную зону, и размещении этой зоны на DNS-сервере, принадлежащем другому лицу или организации. При этом, в родительскую зону включаются «склеивающие» ресурсные записи (NS и А), содержащие указатели на авторитативные DNS-сервера дочерней зоны, а вся остальная информация, относящаяся к дочерней зоне, хранится уже на DNS-серверах дочерней зоны. Например, на иллюстрации корневой домен делегирует полномочия серверам отвечающим за TLD, TLD же в свою очередь, делегируют полномочия управления зонами — серверам второго уровня, иногда на этом цепочка заканчивается, но бывает, что делегирование простирается до 4 и даже 5 уровней.

    Для бОльшего понимания, приведу пример. Делегирование управления поддоменом k-max.name другому лицу (в моем случае — хостеру) приводит к созданию новой зоны, которая администрируется независимо от остального пространства имен (независимо от вышестоящего name.). Зона k-max.name после делегирования полномочий теперь не зависит от name. и может содержать все (вернее сказать — любые имена, которые я захочу) доменные имена, которые заканчиваются на *.k-max.name. С другой стороны, зона name. содержит только доменные имена, оканчивающиеся на *.name., но не входящие в делегированные этой зоны, такие, например, как k-max.name или a-lab.name или любая другая. k-max.name может быть поделен на поддомены с именами вроде mail.k-max.name, ftp.k-max.name и некоторые из этих поддоменов могут быть выделены в самостоятельные зоны, и ответственность за данные зоны может так же быть делегирована. Если ftp.k-max.name будет являться самостоятельной зоной, то зона k-max.name не будет содержать доменные записи, которые заканчиваются на *.ftp.k-max.name.

    Т.о. после делегирования ответственности, информация хранимая делегирующей зоной уже не включает информацию по делегированному поддомену и его ресурсным записям хостов, а хранит информацию о серверах имен, являющихся для делегируемого поддомена авторитативными. Это и есть «склеивающие» записи, о чем я выше уже говорил. В таком случае, если у DNS-сервера родительского домена запрашиваются данные об адресе, принадлежащем делегированному поддомену, в ответ предоставляется список DNS-серверов, которые обладают соответствующей информацией.

    Серверы DNS

    Выше, при рассмотрении типов ресурсных записей я упоминал о первичном и вторичном сервере. Кроме данных типов, существует еще один тип — кэширующий.

    Главный сервер DNS (он же первичный, он же master, он же primary) — это авторитетный сервер (иногда называют — авторитативный, как правильнее называть — не знаю), который хранит главную копию файла данных зоны, сопровождаемую администратором системы.

    Вторичный сервер — тоже является авторитетным, но он копирует главный файл зоны с первичного сервера. Отличие главного от вторичного лишь в том, что главный загружает свою информацию из конфигурационных файлов зоны, а вторичный — загружает (получает) настройки зон — с главного сервера. Вторичный DNS может получать свои данные и от другого вторичного сервера. Любой запрос относительно хоста в пределах зоны, за которую отвечает авторитетный сервер, будет в конце концов передан одному из этих серверов (главному или вторичному). Вторичных серверов может быть сколько угодно много. В зависимости от настроек, главный сервер может посылать вторичному сигнал о изменении зоны, при этом вторичный, получив сигнал производит копирование. Данное действие называется трансфер зоны (zone transfer). Существует два механизма копирования зоны: полное копирование (AXFR) и инкрементальное (incremental) копирование зоны (IXFR).

    Кэширующие серверы НЕ АВТОРИТЕТНЫ, данные серверы хранят в памяти (кэше), ответы на предыдущие запросы, если данный сервер получил запрос, то он сначала просматривает информацию в кэше, и если в кэше не оказалось необходимого ответа, то отправляет запрос вышестоящему серверу DNS.

    Возможно так же настроить DNS в режиме stels (т.н. невидимый), информацию о данном сервере невозможно получить используя прямые запросы. Это может быть полезно для организации primary сервера в защищенной среде и тем самым оградить зону от атак на зону.

    Клиенты DNS (resolver)

    Директива nameserver определяет адрес сервера доменных имен, который будет выполнять рекурсивные запросы resolver. В данном файле указано использовать север имен сначала 192.168.1.1 затем, если первый не смог обработать запрос, 192.168.1.2. Рекомендуется не использовать более 3х параметров nameserver. Если опция nameserver не задана, то резолвер попытается соединиться с сервером на локальном хосте. Параметр domain определяет заданное по умолчанию имя домена, которое будет подставлено, когда DNS не удастся найти имя хоста. Существует так же опция search, которая задает дополнительные домены, в которых необходимо произвести поиск и разрешение имени хоста. Опции search и domain нельзя использовать совместно.

    Кроме кэша на ДНС сервере, существуют кэши интернет-браузеров, кэши резолверов. Довольно прозрачную картину предоставляет Wikipedia:

    Запросы DNS

    В DNS имеются следующие типы запросов: итеративный (он же прямой), обратный и рекурсивный.

    Итеративный (он же прямой, он же нерекурсивный) запрос посылает доменное имя DNS серверу и просит вернуть либо IP адрес этого домена, либо имя DNS сервера, авторитативного для этого домена. При этом, сервер DNS не опрашивает другие серверы для получения ответа. Так работают корневые и TLD серверы.

    Рекурсивный запрос посылает DNS серверу доменное имя и просит возвратить IP адрес запрошенного домена. При этом сервер может обращаться к другим DNS серверам.

    Обратный запрос посылает IP и просит вернуть доменное имя.

    Любой DNS-server должен отвечать на итеративные запросы. Возможно настроить DNS отвечать и на рекурсивные запросы. Если DNS не настроен отвечать на рекурсивные запросы, он обрабатывает их как итеративные.

    Обычно, провайдер выдает в локальной сети стоит DNS-сервер, обрабатывающий рекурсивные запросы, а так же, скорее всего, он настроен на кэширование запросов, что экономит трафик и снижает нагрузку на сеть. Схему взаимодействия клиента и DNS серверов можно представить следующей картинкой:

    Давайте разберем, что тут нарисовано по шагам:

    1. Клиент (браузер, почтовая программа, либо любое другое приложение) отправляет запросрезолверу, резолвер на основании указанных конфигов определяет адрес настроенного сервера имен.
    2. Резолверпосылает запрос указанному серверу имен.
    3. Сервер имен принимает данный рекурсивный запрос и, т.к. не имеет информации ни о домене, ни, возможно, даже о зоне name., отправляет рекурсивный (или нерекурсивный в зависимости от настроек) запроссерверу, отвечающему за корневую зону.
    4. Сервер корневой зоны не обрабатывает рекурсивные запросы, в результате обрабатывает данный запрос как итеративный и возвращает имя и адрес сервера, авторитетного за зону name.
    5. Сервер последовательно продолжает опрашивать авторитативные сервера для последующих зон, в порядке убывания уровня зон в имени
    6. пока не получает удовлетворительный ответ, данных шагов может быть больше, в зависимости от длины доменного имени
    7. и «вложенности» доменных имен.
    8. В итоге, сервер получает необходимый ответ от сервера имен, хранящего необходимую ресурсную запись о хосте.
    9. Сервер провайдера локальной сети возвращает резолверу клиента запрошенные данные.
    Читайте также:  Python m pip install upgrade pip windows 10

    Обычно, количество шагов сокращено до минимума, т.к. на пути прохождения запросов встречается кэширующий сервер, который хранит необходимую информацию в кэше. В данной схеме может возникнуть вопрос: каким образом локальный DNS сервер, получивший рекурсивный запрос от резолвера, выбирает DNS-сервер из списка авторитативных? Существует множество корневых DNS-серверов в сети Интернет, какому из корневых серверов наш DNS-сервер отправит запрос?

    Для решения данного вопроса DNS-серверы BIND используют метрику, называемую временем отклика (roundtrip time, или RTT), для выбора среди авторитативных DNS-серверов одной зоны. RTT определяет задержку, с которой приходит ответ на запросы от удаленного сервера. Каждый раз, при передаче запроса удаленному серверу, DNS-сервер BIND запускает внутренний таймер. Таймер останавливается при получении ответа, и метрика фиксируется локальным сервером. Если приходится выбирать один из нескольких авторитативных серверов, выбор падает на сервер с наименьшим показателем RTT.

    До того как BIND впервые послал запрос какому-либо серверу и получил от него ответ, удаленному серверу присваивается случайное значение RTT, которое меньше, чем все прочие, полученные на основании замеров. Таким образом, DNS BIND гарантированно опросит все авторитативные серверы для определенной зоны случайным образом, прежде чем начнет выбирать предпочтительный на основании метрики.

    Ответы DNS сервера

    Обратное преобразование имен

    DNS используется в первую очередь для преобразования доменных имён в IP-адреса, но он также может выполнять обратный процесс, называемый Обратное преобразование имен или обратным отображением. Т.к. записи в прямой базе DNS структурированы иерархически по доменным именам, DNS не может эффективно выполнять поиск по IP адресу в такой базе. Для обратного преобразования в DNS используется специальный домен in-addr.arpa. Ресурсные записи в данном домене в поле Name содержат IP-адреса, в поле TypePTR, а в поле DataFQDN-имя соответствующее данному IP.

    На схеме представлена структура домена arpa. Думаю, что тут все довольно наглядно. Домен arpa. имеет 2 поддомена in-addr и ip6, отвечающие за IPv4 и IPv6 адреса соответственно. Домен in-addr.arpa. имеет от *.0.in-addr.arpa. до *.255.in-addr.arpa. поддоменов, каждый из которых так же имеет по 256 поддоменов.

    В целях уменьшения объёма нежелательной корреспонденции (спама) многие почтовые серверы могут проверять наличие PTR записи для хоста, с которого происходит отправка. В этом случае PTR запись для IP адреса должна соответствовать имени отправляющего почтового сервера, которым он представляется в процессе SMTP сессии.

    Наглядно приведенную схему можно представить командами:

    При этом, команду dig -x 194.87.0.50 правильнее будет представить как dig 50.0.87.194.in-addr.arpa., то есть записи в поддоменах *.in-addr.arpa. представлены в так называемой обратной нотации (или reverse форме), то есть хосту с IP 194.87.0.50 будет соответствовать PTR-запись, имеющая FQDN 50.0.87.194.in-addr.arpa., которая в свою очередь указывает на домен www.ru Хочется отметить, что чаще всего за обратную зону и ее редактирование отвечает поставщик интернета.

    Как и обещал, описываю ресурсную запись PTR в домене IN-ADDR.ARPA, соответствующая приведенной выше записи А для машины www.ru. будет иметь такой вид:

    Имя 50.0.87.194 не заканчивается точкой и поэтому является относительным. Вопрос: относительным относительно чего? Ни в коем случае не относительно «www.ru». Для того чтобы эта запись была FQDN, домен по умолчанию должен называться «IN-ADDR.ARPA.». Этого можно добиться либо поместив записи PTR в отдельный файл, в котором доменное имя зоны по умолчанию — IN-ADDR.ARPA. (заданный в файле начальной загрузки демона named), либо изменив этот домен с помощью директивы $ORIGIN. Если домен по умолчанию определен как 0.87.194.IN-ADDR.ARPA., то запись можно представить так:

    Регистрация доменных имен

    В двух словах хотел бы затронуть вопрос регистрации доменных имен.

    Регистрация доменов — это действие, посредством которого клиент сообщает регистратору, каким DNS-серверам следует делегировать поддомен, и также снабжает регистратора контактной и платежной информацией. Регистратор передает информацию в соответствующий реестр. Чаще всего, это процесс внесения в реестр зоны первого уровня (то есть в TLD зоны ru, com или др.), записи о новом доменном подимени.

    Регистратор доменных имён — это организация, имеющая полномочия создавать (регистрировать) новые доменные имена и продлевать срок действия уже существующих доменных имён в домене, для которого установлена обязательная регистрация.

    Уровни доменов, для которых необходима обязательная регистрация лица, ответственного за домен, следующие:

    • корневой домен
    • все домены первого уровня (TLD)
    • некоторые домены второго уровня (например, com.ru или co.uk)

    Регистратором для корневого домена является организация ICANN. Чтобы стать регистратором доменов в зонах второго уровня (.com .net .org .biz .info .name .mobi .asia .aero .tel .travel .jobs . ), необходимо получить аккредитацию ICANN.

    Правила регистрации в международных (gTLD — com., org, и др.) доменах устанавливаются ICANN. Правила регистрации в национальных (ccTLD — ru, us и др.) доменах устанавливаются их регистраторами и/или органами власти соответствующих стран, например единые правила для всех регистраторов в доменах .ru, и.рф задаются Координационным центром национального домена сети Интернет. Для многих доменов (в том числе и для ru) регистратор не единственный. При наличии нескольких регистраторов все они должны использовать единую (централизованную или распределённую) базу данных для исключения конфликтов и обеспечения уникальности доменного имени.

    Услуга регистрации домена в большинстве случаев платная, цену и условия регистрации определяет регистратор. Для регистрации домена, необходимо выбрать свободное имя и отправить заявку на регистрацию у одного из регистраторов (например nic.ru), оплатить предоставление услуги. После подтверждения регистрации, необходимо в интерфейсе регистратора определить (делегировать) dns сервера, скорее всего это будут DNS вашего хостера.

    В завершение статьи хочу отметить так же о таком маркетинговом нюансе, что иногда домены второго уровня называют именами доменов ПЕРВОГО уровня, тем самым «опуская» значение корневого домена и принимая за корневой домен — домены TLD.

    Так же хочу отметить, что доменный адрес и IP-адрес не тождественны — один IP-адрес может иметь множество имён, что позволяет поддерживать на одном компьютере множество веб-сайтов (это называется виртуальный хостинг). Обратное тоже справедливо — одному имени может быть сопоставлено множество IP-адресов: это позволяет создавать балансировку нагрузки.

    Резюме

    Итак, в сегодняшней статье я постарался как можно понятней описать работы доменной системы имен. Надеюсь, это у меня получилось. Мы рассмотрели иерархическую структуру базы данных DNS, а так же рассмотрели процессы взаимодействия клиентов и серверов DNS, а так же разновидности серверов DNS. В следующей статье я рассмотрю практические вопросы установки и настройки DNS сервера BIND на Linux. Буду рад Вашим комментариям.

    Что еще почитать:

    Разместил с разрешения mcsim85, у которого еще нет полноценного аккаунта на хабре, но который за такие качественный статьи безусловно его заслуживает! На всякий случай ссылка на оригинал.

    Оцените статью