- Значение двоичного кода – почему компьютеры работают с единицами и нулями
- Подсчет в двоичном формате
- Почему компьютеры используют двоичные файлы
- Почему только двоичная система
- Двоичная система счисления
- Немного истории
- Таблица и алфавит
- Представление двоичных чисел
- Применение двоичной системы в информатике
- Запись текстов двоичным кодом (Запись букв двоичным кодом)
Значение двоичного кода – почему компьютеры работают с единицами и нулями
Компьютеры не понимают слов и цифр так, как это делают люди. Современное программное обеспечение позволяет конечному пользователю игнорировать это, но на самых низких уровнях ваш компьютер оперирует двоичным электрическим сигналом, который имеет только два состояния: есть ток или нет тока. Чтобы «понять» сложные данные, ваш компьютер должен закодировать их в двоичном формате.
Двоичная система основывается на двух цифрах – 1 и 0, соответствующим состояниям включения и выключения, которые ваш компьютер может понять. Вероятно, вы знакомы с десятичной системой. Она использует десять цифр – от 0 до 9, а затем переходит к следующему порядку, чтобы сформировать двузначные числа, причем цифра из каждого следующего порядка в десять раз больше, чем предыдущая. Двоичная система аналогична, причем каждая цифра в два раза больше, чем предыдущая.
Подсчет в двоичном формате
В двоичном выражении первая цифра равноценна 1 из десятичной системы. Вторая цифра равна 2, третья – 4, четвертая – 8, и так далее – удваивается каждый раз. Добавление всех этих значений даст вам число в десятичном формате.
Учет 0 даёт нам 16 возможных значений для четырех двоичных битов. Переместитесь на 8 бит, и вы получите 256 возможных значений. Это занимает намного больше места для представления, поскольку четыре цифры в десятичной форме дают нам 10000 возможных значений. Конечно, бинарный код занимает больше места, но компьютеры понимают двоичные файлы намного лучше, чем десятичную систему. И для некоторых вещей, таких как логическая обработка, двоичный код лучше десятичного.
Следует сказать, что существует ещё одна базовая система, которая используется в программировании: шестнадцатеричная. Хотя компьютеры не работают в шестнадцатеричном формате, программисты используют её для представления двоичных адресов в удобочитаемом формате при написании кода. Это связано с тем, что две цифры шестнадцатеричного числа могут представлять собой целый байт, то есть заменяют восемь цифр в двоичном формате. Шестнадцатеричная система использует цифры 0-9, а также буквы от A до F, чтобы получить дополнительные шесть цифр.
Почему компьютеры используют двоичные файлы
Короткий ответ: аппаратное обеспечение и законы физики. Каждый символ в вашем компьютере является электрическим сигналом, и в первые дни вычислений измерять электрические сигналы было намного сложнее. Было более разумно различать только «включенное» состояние, представленное отрицательным зарядом, и «выключенное» состояние, представленное положительным зарядом.
Для тех, кто не знает, почему «выключено» представлено положительным зарядом, это связано с тем, что электроны имеют отрицательный заряд, а больше электронов – больше тока с отрицательным зарядом.
Таким образом, ранние компьютеры размером с комнату использовали двоичные файлы для создания своих систем, и хотя они использовали более старое, более громоздкое оборудование, они работали на тех же фундаментальных принципах. Современные компьютеры используют, так называемый, транзистор для выполнения расчетов с двоичным кодом.
Вот схема типичного транзистора:
По сути, он позволяет току течь от источника к стоку, если в воротах есть ток. Это формирует двоичный ключ. Производители могут создавать эти транзисторы невероятно малыми – вплоть до 5 нанометров или размером с две нити ДНК. Это то, как работают современные процессоры, и даже они могут страдать от проблем с различением включенного и выключенного состояния (хотя это связано с их нереальным молекулярным размером, подверженным странностям квантовой механики).
Почему только двоичная система
Поэтому вы можете подумать: «Почему только 0 и 1? Почему бы не добавить ещё одну цифру?». Хотя отчасти это связано с традициями создания компьютеров, вместе с тем, добавление ещё одной цифры означало бы необходимость выделять ещё одно состояние тока, а не только «выключен» или «включен».
Проблема здесь в том, что если вы хотите использовать несколько уровней напряжения, вам нужен способ легко выполнять вычисления с ними, а современное аппаратное обеспечение, способное на это, не жизнеспособно как замена двоичных вычислений. Например, существует, так называемый, тройной компьютер, разработанный в 1950-х годах, но разработка на том и прекратилась. Тернарная логика более эффективна, чем двоичная, но пока ещё нет эффективной замены бинарного транзистора или, по крайней мере, нет транзистора столь же крошечных масштабов, что и двоичные.
Причина, по которой мы не можем использовать тройную логику, сводится к тому, как транзисторы соединяются в компьютере и как они используются для математических вычислений. Транзистор получает информацию на два входа, выполняет операцию и возвращает результат на один выход.
Таким образом, бинарная математика проще для компьютера, чем что-либо ещё. Двоичная логика легко преобразуется в двоичные системы, причем True и False соответствуют состояниям Вкл и Выкл .
Бинарная таблица истинности, работающая на двоичной логике, будет иметь четыре возможных выхода для каждой фундаментальной операции. Но, поскольку тройные ворота используют три входа, тройная таблица истинности имела бы 9 или более. В то время как бинарная система имеет 16 возможных операторов (2^2^2), троичная система имела бы 19683 (3^3^3). Масштабирование становится проблемой, поскольку, хотя троичность более эффективна, она также экспоненциально более сложна.
Кто знает? В будущем мы вполне возможно увидим тройничные компьютеры, поскольку бинарная логика столкнулась с проблемами миниатюризации. Пока же мир будет продолжать работать в двоичном режиме.
Двоичная система счисления
Двоичная система — это один из видов позиционных систем счисления. Основание данной системы равно двум, то есть используется только два символа для записи чисел.
Немного истории
Впервые о данной системе чисел заговорил основоположник математического анализа Г.В. Лейбниц еще в XVII веке. Он доказал, что для данного множества действуют все арифметические операции: сложение, вычитание, умножение и даже деление. Однако вплоть до 30-х годов XX века данную систему не рассматривали всерьез. Но с развитием электронных устройств и ЭВМ, ученые вновь принялись к изучению данной темы, так как двоичная система отлично подходила для программирования и организации хранения данных в памяти компьютеров.
Таблица и алфавит
Алфавит двоичной системы счисления состоит всего из двух знаков: 0 и 1 . Однако это нисколько не усложняет выполнение арифметических действий.
Кроме того, двоичная система является самой удобной для быстрого перевода в другие системы счисления.
Так, чтобы перевести двоичное число в десятичное, необходимо найти значение его развернутой формы . Например:
1001102 = 1 ∙ 2 5 + 0 ∙ 2 4 + 0 ∙ 2 3 + 1 ∙ 2 2 + 1 ∙ 2 2 + 0 ∙ 2 0 = 32 + 0 + 0 + 4 + 2 + 0 = 3810
Чтобы наоборот перевести число в двоичную из десятичной, необходимо выполнить его деление на 2 с остатком, а затем записать все остатки в обратном порядке, начиная с частного:
Делимое | 38 | 19 | 9 | 4 | 2 |
---|---|---|---|---|---|
Делитель | 2 | 2 | 2 | 2 | 2 |
Частное | 19 | 9 | 4 | 2 | 1 |
Остаток | 0 | 1 | 1 | 0 | 0 |
Для перевода в другие системы необходимо:
- Перевести двоичный код в десятичный.
- Выполнить деление десятичного числа на основание той системы, в которую требуется перевести.
Однако можно воспользоваться и более быстрым и удобным способом: разделить знаки двоичного числа на условные группы слева на право (для восьмеричной — по 3 знака; для шестнадцатеричной — по 4 знака), а затем воспользоваться таблицей перевода:
Двоичная | Восьмеричная | Шестнадцатеричная |
---|---|---|
0 | 0 | 0 |
001 | 1 | 1 |
010 | 2 | 2 |
011 | 3 | 3 |
100 | 4 | 4 |
101 | 5 | 5 |
110 | 6 | 6 |
111 | 7 | 7 |
1000 | 8 | |
1001 | 9 | |
1010 | A | |
1011 | B | |
1100 | C | |
1101 | D | |
1110 | E | |
1111 | F |
110010012 = 11 001 001 = 011 001 001 = 3118
110010012 = 1100 1001 = С916
Представление двоичных чисел
В двоичной системе также существует понятие «отрицательных» чисел. И для того, чтобы провести какую-либо операцию с ними в двоичном коде, необходимо представить его в виде дополнительного кода. Запись положительного числа при этом не меняется ни для одного из кодов.
Чтобы найти дополнительный код отрицательного числа, необходимо воспользоваться его прямым и дополнительным кодами.
Прямой код предполагает приписывание единицы в начале без изменений записи:
A > 0 | Aпр = 0A | 1010112; Aпр = 01010112 |
A ≤ 0 | Aпр = 1|A| | -1010112; Aпр = 11010112 |
Для записи обратного кода цифры заменяют на противоположное значение, первую единицу от прямого кода оставляют без изменений:
A > 0 | Aобр = 0A | 1010112; Aобр = 01010112 |
A ≤ 0 | Aобр = 1 A | -1010112; Aобр = 10101002 |
Дополнительный код предполагает использование обратного кода, с той лишь разницей, что к отрицательному числу прибавляют единицу:
A > 0 | Aдоп = 0A | 1010112; Aдоп = 01010112 |
A ≤ 0 | Aдоп = 1 A + 1 | -1010112; Aдоп = 10101012 |
Применение двоичной системы в информатике
Двоичная система получила особое распространение в программировании цифровых устройств, так как она соответствует требованиям многих технических устройств, поддерживающих два состояния (есть ток, нет тока). Кроме того, является более простой и надежной для кодирования информации. Именно поэтому программный код большей части ЭВМ основан именно на двоичной системе счисления.
Запись текстов двоичным кодом (Запись букв двоичным кодом)
Все символы и буквы могут быть закодированы при помощи восьми двоичных бит. Наиболее распространенными таблицами представления букв в двоичном коде являются ASCII и ANSI, их можно использовать для записи текстов в микропроцессорах. В таблицах ASCII и ANSI первые 128 символов совпадают. В этой части таблицы содержатся коды цифр, знаков препинания, латинские буквы верхнего и нижнего регистров и управляющие символы. Национальные расширения символьных таблиц и символы псевдографики содержатся в последних 128 кодах этих таблиц, поэтому русские тексты в операционных системах DOS и WINDOWS не совпадают.
При первом знакомстве с компьютерами и микропроцессорами может возникнуть вопрос — «как преобразовать текст в двоичный код?» Однако это преобразование является наиболее простым действием! Для этого нужно воспользоваться любым текстовым редактором. В том числе подойдет и простейшая программа notepad, входящая в состав операционной системы Windows. Подобные же редакторы присутствуют во всех средах программирования для языков, таких как СИ, Паскаль или Ява. Следует отметить, что наиболее распространенный текстовый редактор Word для простого преобразования текста в двоичный код не подходит. Этот тестовый редактор вводит огромное количество дополнительной информации, такой как цвет букв, наклон, подчеркивание, язык, на котором написана конкретная фраза, шрифт.
Следует отметить, что на самом деле комбинация нулей и единиц, при помощи которых кодируется текстовая информация двоичным кодом не является, т.к. биты в этом коде не подчиняются законам двоичной системы счисления. Однако в Интернете поисковая фраза «представление букв в двоичном коде» является самой распространенной. В таблице 1 приведено соответствие двоичных кодов буквам латинского алфавита. Для краткости записи в этой таблице последовательность нулей и единиц представлена в десятичном и шестнадцатеричном кодах.
Таблица 1 Таблица представления латинских букв в двоичном коде (ASCII)
Десятичный код | Шестнадцатеричный код | Отображаемый символ | Значение |
---|---|---|---|
0 | 00 | NUL | |
1 | 01 | ☺ | (слово управления дисплеем) |
2 | 02 | ☻ | (Первое передаваемое слово) |
3 | 03 | ♥ | ETX (Последнее слово передачи) |
4 | 04 | ♦ | EOT (конец передачи) |
5 | 05 | ♣ | ENQ (инициализация) |
6 | 06 | ♠ | ACK (подтверждение приема) |
7 | 07 | • | BEL |
8 | 08 | ◘ | BS |
9 | 09 | ○ | HT (горизонтальная табуляция |
10 | 0A | ◙ | LF (перевод строки) |
11 | 0B | ♂ | VT (вертикальная табуляция) |
12 | 0С | ♀ | FF (следующая страница) |
13 | 0D | ♪ | CR (возврат каретки) |
14 | 0E | ♫ | SO (двойная ширина) |
15 | 0F | ☼ | SI (уплотненная печать) |
16 | 10 | ► | DLE |
17 | 11 | ◄ | DC1 |
18 | 12 | ↕ | DC2 (отмена уплотненной печати) |
19 | 13 | ‼ | DC3 (готовность) |
20 | 14 | ¶ | DC4 (отмена двойной ширины) |
21 | 15 | § | NAC (неподтверждение приема) |
22 | 16 | ▬ | SYN |
23 | 17 | ↨ | ETB |
24 | 18 | ↑ | CAN |
25 | 19 | ↓ | EM |
26 | 1A | → | SUB |
27 | 1B | ← | ESC (начало управл. послед.) |
28 | 1C | ∟ | FS |
29 | 1D | ↔ | GS |
30 | 1E | ▲ | RS |
31 | 1F | ▼ | US |
32 | 20 | Пробел | |
33 | 21 | ! | Восклицательный знак |
34 | 22 | « | Угловая скобка |
35 | 23 | # | Знак номера |
36 | 24 | $ | Знак денежной единицы (доллар) |
37 | 25 | % | Знак процента |
38 | 26 | & | Амперсанд |
39 | 27 | ‘ | Апостроф |
40 | 28 | ( | Открывающая скобка |
41 | 29 | ) | Закрывающая скобка |
42 | 2A | * | Звездочка |
43 | 2B | + | Знак плюс |
44 | 2C | , | Запятая |
45 | 2D | — | Знак минус |
46 | 2E | . | Точка |
47 | 2F | / | Дробная черта |
48 | 30 | 0 | Цифра ноль |
49 | 31 | 1 | Цифра один |
50 | 32 | 2 | Цифра два |
51 | 33 | 3 | Цифра три |
52 | 34 | 4 | Цифра четыре |
53 | 35 | 5 | Цифра пять |
54 | 36 | 6 | Цифра шесть |
55 | 37 | 7 | Цифра семь |
56 | 38 | 8 | Цифра восемь |
57 | 39 | 9 | Цифра девять |
58 | 3A | : | Двоеточие |
59 | 3B | ; | Точка с запятой |
60 | 3C | Знак больше | |
63 | 3F | ? | Знак вопрос |
64 | 40 | @ | Коммерческое эт |
65 | 41 | A | Прописная латинская буква А |
66 | 42 | B | Прописная латинская буква B |
67 | 43 | C | Прописная латинская буква C |
68 | 44 | D | Прописная латинская буква D |
69 | 45 | E | Прописная латинская буква E |
70 | 46 | F | Прописная латинская буква F |
71 | 47 | G | Прописная латинская буква G |
72 | 48 | H | Прописная латинская буква H |
73 | 49 | I | Прописная латинская буква I |
74 | 4A | J | Прописная латинская буква J |
75 | 4B | K | Прописная латинская буква K |
76 | 4C | L | Прописная латинская буква L |
77 | 4D | M | Прописная латинская буква |
78 | 4E | N | Прописная латинская буква N |
79 | 4F | O | Прописная латинская буква O |
80 | 50 | P | Прописная латинская буква P |
81 | 51 | Q | Прописная латинская буква |
82 | 52 | R | Прописная латинская буква R |
83 | 53 | S | Прописная латинская буква S |
84 | 54 | T | Прописная латинская буква T |
85 | 55 | U | Прописная латинская буква U |
86 | 56 | V | Прописная латинская буква V |
87 | 57 | W | Прописная латинская буква W |
88 | 58 | X | Прописная латинская буква X |
89 | 59 | Y | Прописная латинская буква Y |
90 | 5A | Z | Прописная латинская буква Z |
91 | 5B | [ | Открывающая квадратная скобка |
92 | 5C | \ | Обратная черта |
93 | 5D | ] | Закрывающая квадратная скобка |
94 | 5E | ^ | «Крышечка» |
95 | 5 | _ | Символ подчеркивания |
96 | 60 | ` | Апостроф |
97 | 61 | a | Строчная латинская буква a |
98 | 62 | b | Строчная латинская буква b |
99 | 63 | c | Строчная латинская буква c |
100 | 64 | d | Строчная латинская буква d |
101 | 65 | e | Строчная латинская буква e |
102 | 66 | f | Строчная латинская буква f |
103 | 67 | g | Строчная латинская буква g |
104 | 68 | h | Строчная латинская буква h |
105 | 69 | i | Строчная латинская буква i |
106 | 6A | j | Строчная латинская буква j |
107 | 6B | k | Строчная латинская буква k |
108 | 6C | l | Строчная латинская буква l |
109 | 6D | m | Строчная латинская буква m |
110 | 6E | n | Строчная латинская буква n |
111 | 6F | o | Строчная латинская буква o |
112 | 70 | p | Строчная латинская буква p |
113 | 71 | q | Строчная латинская буква q |
114 | 72 | r | Строчная латинская буква r |
115 | 73 | s | Строчная латинская буква s |
116 | 74 | t | Строчная латинская буква t |
117 | 75 | u | Строчная латинская буква u |
118 | 76 | v | Строчная латинская буква v |
119 | 77 | w | Строчная латинская буква w |
120 | 78 | x | Строчная латинская буква x |
121 | 79 | y | Строчная латинская буква y |
122 | 7A | z | Строчная латинская буква z |
123 | 7B | < | Открывающая фигурная скобка |
124 | 7С | | | Вертикальная черта |
125 | 7D | > | Закрывающая фигурная скобка |
126 | 7E | Тильда | |
127 | 7F | ⌂ |
В классическом варианте таблицы символов ASCII нет русских букв и она состоит из . Однако в дальнейшем эта таблица была расширена до и в старших 128 строках появились русские буквы в двоичном коде и символы псевдографики. В общем случае во второй части размещены национальные алфавиты разных стран и русские буквы там просто один из возможных наборов (855) там может быть французская (863), немецкая (1141) или греческая (737) таблица. В таблице 2 приведен пример представления русских букв в двоичном коде.
Таблица 2. Таблица представления русских букв в двоичном коде (ASCII)
Десятичный код | Шестнадцатеричный код | Отображаемый символ | Значение |
---|---|---|---|
128 | 80 | А | Прописная русская буква А |
129 | 81 | Б | Прописная русская буква Б |
130 | 82 | В | Прописная русская буква В |
131 | 83 | Г | Прописная русская буква Г |
132 | 84 | Д | Прописная русская буква Д |
133 | 85 | Е | Прописная русская буква Е |
134 | 86 | Ж | Прописная русская буква Ж |
135 | 87 | З | Прописная русская буква З |
136 | 88 | И | Прописная русская буква И |
137 | 89 | Й | Прописная русская буква Й |
138 | 8A | К | Прописная русская буква К |
139 | 8B | Л | Прописная русская буква Л |
140 | 8C | М | Прописная русская буква М |
141 | 8D | Н | Прописная русская буква Н |
142 | 8E | О | Прописная русская буква О |
143 | 8F | П | Прописная русская буква П |
144 | 90 | Р | Прописная русская буква Р |
145 | 91 | С | Прописная русская буква С |
146 | 92 | Т | Прописная русская буква Т |
147 | 93 | У | Прописная русская буква У |
148 | 94 | Ф | Прописная русская буква Ф |
149 | 95 | Х | Прописная русская буква Х |
150 | 96 | Ц | Прописная русская буква Ц |
151 | 97 | Ч | Прописная русская буква Ч |
152 | 98 | Ш | Прописная русская буква Ш |
153 | 99 | Щ | Прописная русская буква Щ |
154 | 9A | Ъ | Прописная русская буква Ъ |
155 | 9B | Ы | Прописная русская буква Ы |
156 | 9C | Ь | Прописная русская буква Ь |
157 | 9D | Э | Прописная русская буква Э |
158 | 9E | Ю | Прописная русская буква Ю |
159 | 9F | Я | Прописная русская буква Я |
160 | A0 | а | Строчная русская буква а |
161 | A1 | б | Строчная русская буква б |
162 | A2 | в | Строчная русская буква в |
163 | A3 | г | Строчная русская буква г |
164 | A4 | д | Строчная русская буква д |
165 | A5 | е | Строчная русская буква е |
166 | A6 | ж | Строчная русская буква ж |
167 | A7 | з | Строчная русская буква з |
168 | A8 | и | Строчная русская буква и |
169 | A9 | й | Строчная русская буква й |
170 | AA | к | Строчная русская буква к |
171 | AB | л | Строчная русская буква л |
172 | AC | м | Строчная русская буква м |
173 | AD | н | Строчная русская буква н |
174 | AE | о | Строчная русская буква о |
175 | AF | п | Строчная русская буква п |
176 | B0 | ░ | |
177 | B1 | ▒ | |
178 | B2 | ▓ | |
179 | B3 | │ | Символ псевдографики |
180 | B4 | ┤ | Символ псевдографики |
181 | B5 | ╡ | Символ псевдографики |
182 | B6 | ╢ | Символ псевдографики |
183 | B7 | ╖ | Символ псевдографики |
184 | B8 | ╕ | Символ псевдографики |
185 | B9 | ╣ | Символ псевдографики |
186 | BA | ║ | Символ псевдографики |
187 | BB | ╗ | Символ псевдографики |
188 | BC | ╝ | Символ псевдографики |
189 | BD | ╜ | Символ псевдографики |
190 | BE | ╛ | Символ псевдографики |
191 | BF | ┐ | Символ псевдографики |
192 | C0 | └ | Символ псевдографики |
193 | C1 | ┴ | Символ псевдографики |
194 | C2 | ┬ | Символ псевдографики |
195 | C3 | ├ | Символ псевдографики |
196 | C4 | ─ | Символ псевдографики |
197 | C5 | ┼ | Символ псевдографики |
198 | C6 | ╞ | Символ псевдографики |
199 | C7 | ╟ | Символ псевдографики |
200 | C8 | ╚ | Символ псевдографики |
201 | C9 | ╔ | Символ псевдографики |
202 | CA | ╩ | Символ псевдографики |
203 | CB | ╦ | Символ псевдографики |
204 | CC | ╠ | Символ псевдографики |
205 | CD | ═ | Символ псевдографики |
206 | CE | ╬ | Символ псевдографики |
207 | CF | ╧ | Символ псевдографики |
208 | D0 | ╨ | Символ псевдографики |
209 | D1 | ╤ | Символ псевдографики |
210 | D2 | ╥ | Символ псевдографики |
211 | D3 | ╙ | Символ псевдографики |
212 | D4 | ╘ | Символ псевдографики |
213 | D5 | ╒ | Символ псевдографики |
214 | D6 | ╓ | Символ псевдографики |
215 | D7 | ╫ | Символ псевдографики |
216 | D8 | ╪ | Символ псевдографики |
217 | D9 | ┘ | Символ псевдографики |
218 | DA | ┌ | Символ псевдографики |
219 | DB | █ | |
220 | DC | ▄ | |
221 | DD | ▌ | |
222 | DE | ▐ | |
223 | DF | ▀ | |
224 | E0 | р | Строчная русская буква р |
225 | E1 | с | Строчная русская буква с |
226 | E2 | т | Строчная русская буква т |
227 | E3 | у | Строчная русская буква у |
228 | E4 | ф | Строчная русская буква ф |
229 | E5 | х | Строчная русская буква х |
230 | E6 | ц | Строчная русская буква ц |
231 | E7 | ч | Строчная русская буква ч |
232 | E8 | ш | Строчная русская буква ш |
233 | E9 | щ | Строчная русская буква щ |
234 | EA | ъ | Строчная русская буква ъ |
235 | EB | ы | Строчная русская буква ы |
236 | EC | ь | Строчная русская буква ь |
237 | ED | э | Строчная русская буква э |
238 | EE | ю | Строчная русская буква ю |
239 | EF | я | Строчная русская буква я |
240 | F0 | Ё | Прописная русская буква Ё |
241 | F1 | ё | Строчная русская буква ё |
242 | F2 | Є | |
243 | F3 | є | |
244 | F4 | Ї | |
245 | F5 | Ї | |
246 | F6 | Ў | |
247 | F7 | ў | |
248 | F8 | ° | Знак градуса |
249 | F9 | ∙ | Знак умножения (точка) |
250 | FA | · | |
251 | FB | √ | Радикал (взятие корня) |
252 | FC | № | Знак номера |
253 | FD | ¤ | Знак денежной единицы (рубль) |
254 | FE | ■ | |
255 | FF |
При записи текстов кроме двоичных кодов, непосредственно отображающих буквы, применяются коды, обозначающие переход на новую строку и возврат курсора (возврат каретки) на нулевую позицию строки. Эти символы обычно применяются вместе. Их двоичные коды соответствуют десятичным числам — 10 (0A) и 13 (0D). В качестве примера ниже приведен участок текста данной страницы (дамп памяти). На этом участке записан ее первый абзац. Для отображения информации в дампе памяти применен следующий формат:
- в первой колонке записан двоичный адрес первого байта строки
- в следующи шестнадцати колонках записаны байты, содержащиеся в текстовом файле. Для более удобного определения номера байта после восьмой колонки проведена вертикальная линия. Байты, для краткости записи, представлены в шестнадцатеричном коде.
- в последней колонке эти же байты представлены в виде отображаемых буквенных символов
В приведенном примере видно, что первая строка текста занимает 80 байт. Первый байт 82 соответствует букве ‘В’. Второй байт E1 соответствует букве ‘с’. Третий байт A5 соответствует букве ‘е’. Следующий байт 20 отображает пустой промежуток между словами (пробел) ‘ ‘. 81 и 82 байты содержат символы возврата каретки и перевода строки 0D 0A. Эти символы мы находим по двоичному адресу 00000050: Следующая строка исходного текста не кратна 16 (ее длина равна 76 буквам), поэтому для того, чтобы найти ее конец потребуется сначала найти строку 000000E0: и от нее отсчитать девять колонок. Там снова записаны байты возврата каретки и перевода строки 0D 0A. Остальной текст анализируется точно таким же образом.
Дата последнего обновления файла 04.12.2018