File system gnu linux

Файловая система Linux

Ход занятия

1. Файловая система Linux, в отличие от операционных систем семейства Windows не разделена по томам (дискам, устройствам), а имеет единую древовидную структуру, в основе которой лежит корневой каталог. Корневой каталог — это уровень файловой системы, выше которого по дереву каталогов подняться невозможно. В Linux корневой каталог обозначается как / (именно / — слэш, а не \ — обратный слэш). Система позволяет устанавливать много корневых каталогов. Так например для некоторого пользователя ftp /home будет корневым каталогом и при обращении к клиенту ftp на смену каталога на корневой пользователь будет попадать в /home .

Возникает вопрос, а как тогда разные физические устройства участвуют в формировании единой файловой системы? Сделаем небольшой экскурс в историю. В то время, когда создавалась ОС Unix, устройства – накопители информации представляли собой ящик размером с письменный стол и назывались магнитными барабанами. В то время не было необходимости подключать и отключать его по нескольку раз в час. Поэтому не был выработан и механизм быстрой смены. Для подключения любого устройства к файловой системе используется так называемая точка монтирования – каталог, все вложенные уровни которого являются файловой системой на устройстве-носителе. Например, при монтировании дискеты обычно используется каталог /media/floppy . То есть, все каталоги и файлы, находящиеся внутри /media/floppy на самом деле содержатся на дискете, вставленной в дисковод компьютера. Для подключения, или монтирования, устройств используется специальная команда , которую мы изучим на следующих занятиях. Таким образом подключаются и сетевые файловые системы, то есть такие системы, которые реально находятся где-то на сервере в сети, однако различий в работе с ними пользователь не ощущает и видит сетевые файлы и каталоги, как если бы они были расположены на локальном компьютере.

Есть у файловой системы Linux и еще одна особенность: пользователям в ней выделяется домашний каталог – специальный каталог, необходимый для хранения пользователем своих личных данных. При входе пользователя в систему, он сразу оказывается в своем домашнем каталоге. Обычно права доступа к домашнему каталогу с консоли пользователя выставлены таким образом, что доступ к каталогу запрещен всем кроме владельца и администратора.

2. В файловой системе Линукс различают несколько типов файлов. Понятие «файл» включает в себя также и интерфейсы работы с периферийными устройствами, и каналы, позволяющие разным процессам в системе обмениваться данными.

Источник

File systems (Русский)

Файловая система (англ. file system) — порядок, определяющий способ организации, хранения и именования данных на носителях информации в компьютерах, а также в другом электронном оборудовании: цифровых фотоаппаратах, мобильных телефонах и т.п. Файловая система определяет формат содержимого и способ физического хранения информации, которую принято группировать в виде файлов. Конкретная файловая система определяет размер имен файлов и (каталогов), максимальный возможный размер файла и раздела, набор атрибутов файла. Некоторые файловые системы предоставляют сервисные возможности, например, разграничение доступа или шифрование файлов.

Читайте также:  Windows 10 для планшета lenovo miix 320

Отдельные разделы дисков можно настроить с использованием одной из множества доступных файловых систем. У каждой есть свои преимущества, недостатки и уникальные особенности. Ниже приведен краткий обзор поддерживаемых файловых систем; также и ссылки на страницы Википедии, которые предоставляют гораздо больше информации.

Contents

Типы файловых систем

Смотрите filesystems(5) для общего обзора и Википедию:Сравнение файловых систем для подробного сравнения функций. Файловые системы, поддерживаемые ядром, перечислены в /proc/filesystems .

Файловая система Команда создания Утилиты пользовательского пространства Archiso [1] Документация ядра [2] Заметки
Btrfs mkfs.btrfs(8) btrfs-progs Да btrfs.html Статус стабильности
VFAT mkfs.vfat(8) dosfstools Да vfat.html
exFAT mkfs.exfat(8) exfat-utils Опционально N/A (на основе FUSE)
F2FS mkfs.f2fs(8) f2fs-tools Да f2fs.html Флэш-устройства
ext3 mke2fs(8) e2fsprogs Да ( base ) ext3.html
ext4 mke2fs(8) e2fsprogs Да ( base ) ext4.html
HFS mkfs.hfsplus(8) [устаревшая ссылка 2017-11-25] hfsprogs AUR Опционально hfs.html Файловая система MacOS
JFS mkfs.jfs(8) jfsutils Да ( base ) jfs.html
NILFS2 mkfs.nilfs2(8) nilfs-utils Да nilfs2.html
NTFS mkfs.ntfs(8) ntfs-3g Да N/A (на основе FUSE) Файловая система Windows
Reiser4 mkfs.reiser4(8) reiser4progs AUR Нет
ReiserFS mkfs.reiserfs(8) reiserfsprogs Да ( base )
XFS mkfs.xfs(8) xfsprogs Да ( base )
ZFS zfs-linux AUR Нет N/A (порт OpenZFS)

Журналирование

Все вышеупомянутые файловые системы, за исключением ext2, FAT16/32, Btrfs и ZFS, используют ведение журнала. Журналирование обеспечивает отказоустойчивость путем регистрации изменений до того, как они будут привязаны к файловой системе. В случае сбоя системы или сбоя питания такие файловые системы быстрее возвращаются в сеть и реже становятся поврежденными. Ведение журнала происходит в выделенной области файловой системы.

Не все методы ведения журнала одинаковы. Ext3 и ext4 предлагают журналирование в режиме данных, в котором регистрируются как данные, так и метаданные, а также возможность вести журнал только изменений метаданных. Журналирование в режиме данных имеет ограничение скорости и не включено по умолчанию. В том же ключе Reiser4 предлагает так называемые «модели транзакций», которые включают в себя чистое ведение журнала (эквивалентное журнальному ведению журнала данных ext4), чистый подход копирования при записи (эквивалент по умолчанию btrfs) и комбинированный подход, который эвристически чередуется между двумя бывшими.

Другие файловые системы обеспечивают упорядоченное ведение журнала, которое регистрирует только метаданные. Хотя все журналирование вернет файловую систему в допустимое состояние после сбоя, журналирование в режиме данных обеспечивает максимальную защиту от повреждений и потери данных. Однако есть компромисс в производительности системы, поскольку журналирование в режиме данных выполняет две операции записи: сначала в журнал, а затем на диск. При выборе типа файловой системы следует учитывать компромисс между скоростью системы и безопасностью данных.

Файловые системы, основанные на механизме копирования при записи, такие как Btrfs и ZFS, не должны использовать традиционный журнал для защиты метаданных, потому что они никогда не обновляются на месте. Хотя Btrfs все еще имеет журнальное дерево, подобное журналу, оно используется только для ускорения работы fdatasync/fsync.

Читайте также:  Acpi error astra linux

Файловые системы на основе FUSE

Файловая система в пользовательском пространстве (FUSE) — это механизм для Unix-подобных операционных систем, который позволяет не-привилегированным пользователям создавать свои собственные файловые системы без редактирования кода ядра. Это достигается путем запуска кода файловой системы в пространстве пользователя, в то время как модуль ядра FUSE предоставляет только «мост» для реальных интерфейсов ядра.

Некоторые файловые системы на основе FUSE:

Штабелируемые файловые системы

  • aufs — усовершенствованная многоуровневая файловая система унификации, объединенная файловая система на основе FUSE, полностью переписанная Unionfs, отклоненная от основной линии Linux, и вместо этого OverlayFS был объединен в ядро Linux.

http://aufs.sourceforge.net || linux-aufsAUR

  • eCryptfs — корпоративная криптографическая файловая система представляет собой пакет программного обеспечения для шифрования диска Linux. Он реализует шифрование на уровне файловой системы, совместимый с POSIX, с целью предложить функциональность, аналогичную функции GnuPG на уровне операционной системы.

https://ecryptfs.org || ecryptfs-utils

  • mergerfs — объединенная файловая система на основе FUSE.

https://github.com/trapexit/mergerfs || mergerfsAUR

  • mhddfs — файловая система Multi-HDD FUSE, объединенная на основе FUSE.

http://mhddfs.uvw.ru || mhddfsAUR

  • overlayfs — это служба файловой системы для Linux, которая реализует объединение для монтирования других файловых систем.

https://www.kernel.org/doc/html/latest/filesystems/overlayfs.html || linux

  • Unionfs — это служба файловой системы для Linux, FreeBSD и NetBSD, которая реализует объединение монтирования для других файловых систем.

https://unionfs.filesystems.org/ || not packaged? search in AUR

  • unionfs-fuse — реализация пользовательского пространства Unionfs.

https://github.com/rpodgorny/unionfs-fuse || unionfs-fuse

Файловые системы только для чтения

  • SquashFS — сжимающая файловая система для GNU/Linux, предоставляющая доступ к данным в режиме «только для чтения». Squashfs сжимает файлы, индексные дескрипторы и каталоги, а также поддерживает блоки размером до 1024 Кбайт для лучшего сжатия.

http://squashfs.sourceforge.net/ || squashfs-tools

Кластерные файловые системы

  • Ceph — унифицированная распределенная система хранения, предназначенная для отличной производительности, надежности и масштабируемости.

https://ceph.com/ || ceph

  • Glusterfs — кластерная файловая система способна масштабироваться до нескольких пета-байт.

https://www.gluster.org/ || glusterfs

  • IPFS — одноранговый протокол гипермедиа, чтобы сделать Интернет более быстрым, безопасным и открытым. IPFS нацелена на замену HTTP и создание лучшей сети для всех нас. Использует блоки для хранения частей файла, каждый сетевой узел хранит только интересующий контент, обеспечивает дедупликацию, распространение, масштабируемую систему, ограниченную только пользователями. (В настоящее время в aplha)

https://ipfs.io/ || go-ipfs

  • MooseFS — это отказоустойчивая, высокодоступная и высокопроизводительная сетевая распределенная файловая система.

https://www.gluster.org/ || moosefs

  • OpenAFS — реализация с открытым исходным кодом распределенной файловой системы AFS

https://www.openafs.org || openafsAUR

  • OrangeFS — это масштабируемая сетевая файловая система, предназначенная для прозрачного доступа к дисковой памяти на нескольких серверах параллельно. Имеет оптимизированную поддержку MPI-IO для параллельных и распределенных приложений. Упрощает использование параллельного хранения не только для клиентов Linux, но и для Windows, Hadoop и WebDAV. POSIX-совместимая. Часть ядра Linux, начиная с версии 4.6.

https://www.orangefs.org/ || not packaged? search in AUR

  • Sheepdog — распределенная система хранения объектов для объемных и контейнерных сервисов и разумно управляет дисками и узлами.

https://sheepdog.github.io/sheepdog/ || not packaged? search in AUR

  • Tahoe-LAFS — файловая система Thahoe Least-Authority — это бесплатное и открытое, безопасное, децентрализованное, отказоустойчивое, одноранговое распределенное хранилище данных и распределенная файловая система.
Читайте также:  How to repair windows boot manager

https://tahoe-lafs.org/ || tahoe-lafsAUR

Определение существующих файловых систем

Чтобы определить существующие файловые системы, вы можете использовать lsblk:

Существующая файловая система, если она есть, будет показана в столбце FSTYPE . Если она смонтирована, тогда появится в столбце MOUNTPOINT .

Создание файловой системы

Файловые системы обычно создаются на разделе, внутри логических контейнеров, таких как LVM, RAID и dm-crypt, или в обычном файле (смотрите w:Loop device). В этом разделе описывается случай раздела.

Прежде чем продолжить, определите устройство, в котором будет создана файловая система, и независимо от того, монтируется ли она. Например:

Перед продолжением необходимо размонтировать файловые системы. В приведенном выше примере существующая файловая система находится на /dev/sda2 и монтируется в /mnt . Он будет размонтирован командой:

Чтобы найти только смонтированные файловые системы, смотрите #Список смонтированных файловых систем.

Чтобы создать новую файловую систему, используйте mkfs(8) . Смотрите #Типы файловых систем для точного типа, а также утилиты пользовательского пространства, которые вы, возможно, захотите установить для конкретной файловой системы.

Например, чтобы создать новую файловую систему типа ext4 (обычно для разделов данных Linux) на /dev/sda1 , запустите:

Новая файловая система теперь может быть смонтирована в выбранный каталог.

Монтирование файловой системы

Чтобы вручную смонтировать файловую систему, расположенную на устройстве (например, раздел) к каталогу, используйте mount(8) . В этом примере монтируется /dev/sda1 в /mnt .

Это прикрепляет файловую систему раздела /dev/sda1 в каталог /mnt , делая содержимое файловой системы видимым. Любые данные, существовавшие в /mnt перед этим действием, становятся невидимыми до тех пор, пока устройство не будет размонтировано.

fstab содержит информацию о том, как устройства должны автоматически монтироваться, если они присутствуют. Для получения дополнительной информации о том, как изменить это поведение, смотрите статью fstab.

Если устройство указано в /etc/fstab , и в командной строке указывается только устройство или точки монтирования, эта информация будет использоваться при монтирование. Например, если /etc/fstab содержит строку, указывающую, что /dev/sda1 должен быть смонтирован в /mnt , тогда он автоматически будет монтировать это устройство к этому месту:

mount содержит несколько параметров, многие из которых зависят от указанной файловой системы. Параметры могут быть изменены:

  • использование флагов в командной строке с mount
  • редактирование fstab
  • создание правил udev
  • самостоятельно компилировать ядро
  • или используя скрипты монтирования файловой системы (расположенные по адресу /usr/bin/mount.* ).

Более подробную информацию смотрите в связанных статьях и статье интересующей файловой системы.

Список смонтированных файловых систем

Чтобы просмотреть все смонтированные файловые системы, используйте findmnt(8) :

findmnt принимает множество аргументов, которые могут фильтровать вывод и отображать дополнительную информацию. Например, в качестве аргумента может принимать устройство или точку монтирования для отображения только информации о том, что указывается:

findmnt собирает информацию из /etc/fstab , /etc/mtab и /proc/self/mounts .

Размонтирование файловой системы

Чтобы размонтировать файловую систему, используйте umount(8) . Можно указать либо устройство, содержащее файловую систему (например, /dev/sda1 ), либо точку монтирования (например, /mnt ):

Источник

Оцените статью