Функции для работы с процессами windows

Процессы Windows

Понятие «процесса» существовало в операционных системах Windows задолго до появления платформы .NET. Попросту говоря, под процессом понимается выполняющаяся программа. Однако формально — это концепция уровня операционной системы, которая используется для описания набора ресурсов (таких как внешние библиотеки кода и главный поток) и необходимой памяти, используемой выполняющимся приложением. Для каждого загружаемого в память файла *.ехе в операционной системе создается отдельный изолированный процесс, который используется на протяжении всего времени его существования. Благодаря такой изоляции приложений, исполняющая среда получается гораздо более надежной и стабильной, поскольку выход из строя одного процесса никак не сказывается на работе других процессов.

Более того, доступ напрямую к данным в одном процессе из другого процесса невозможен, если только не применяется API-интерфейс распределенных вычислений, такой как Windows Communication Foundation. Из-за всех этих моментов процесс может считаться фиксированной и безопасной границей выполняющегося приложения.

Каждый процесс Windows получает уникальный идентификатор процесса (Process ID — PID) и может независимо загружаться и выгружаться операционной системой (в том числе программно). Как уже наверняка известно, в окне WindowsTask Manager (Диспетчер задач) имеется вкладка Processes (Процессы), на которой можно просматривать различные статические данные о выполняющихся на данной машине процессах, в том числе их PID-идентификаторы и имена образов. Чтобы открыть окно диспетчера задач, нажмите комбинацию клавиш :

Роль потоков

В каждом процессе Windows содержится первоначальный «поток», который является входной точкой для приложения. Потоком называется используемый внутри процесса путь выполнения. Формально поток, который создается первым во входной точке процесса, называется главным потоком (primary thread). В любой исполняемой программе .NET (консольном приложении, приложении Windows Forms, приложении WPF и т.д.) входная точка обозначается как метод Main(). При вызове этого метода главный поток создается автоматически.

Процессы, в которых содержится единственный главный поток выполнения, изначально являются безопасными к потокам (thread safe), поскольку в каждый отдельный момент времени доступ к данным приложения в них может получать только один поток. Однако подобные однопоточные процессы (особенно с графическим пользовательским интерфейсом) часто замедленно реагируют на действия пользователя, когда их единственный поток выполняет какую-то сложную операцию (вроде вывода на печать длинного текстового файла, сложных математических вычислений или подключения к удаленному серверу).

Из-за такого потенциального недостатка однопоточных приложений, API-интерфейс Windows (а также платформа .NET) предоставляет возможность для главного потока порождать дополнительные вторичные потоки (также называемые рабочими потоками). Это делается с применением набора функций из API-интерфейса Windows, таких как CreateThread() . Каждый поток (первичный или вторичный) в процессе становится уникальным путем выполнения и может параллельно получать доступ ко всем разделяемым элементам данных внутри соответствующего процесса.

Как нетрудно догадаться, разработчики обычно создают дополнительные потоки для улучшения общей степени восприимчивости программы к действиям пользователя. Многопоточные процессы обеспечивают иллюзию того, что выполнение многочисленных действий происходит примерно в одно и то же время. Например, дополнительный рабочий поток может порождаться в приложении для выполнения какой-нибудь трудоемкой задачи (подобной выводу на печать большого текстового файла). После начала выполнения задачи вторичным потоком основной поток все равно не утрачивает способности реагировать на действия пользователя, что дает всему процессу возможность сопровождаться куда более высокой производительностью.

Однако такого может и не происходить: в случае использования слишком большого количества потоков в одном процессе его производительность может даже ухудшаться из-за возникновения у ЦП необходимости переключаться между активными потоками в процессе (что отнимает определенное время).

На некоторых машинах многопоточность по большей части представляет собой не более чем просто обеспечиваемую операционной системой иллюзию. Машины с одним (не поддерживающим гиперпотоки) процессором буквально не имеют никакой возможности обрабатывать множество потоков в точности в одно и то же время. Вместо этого они выполняют по одному потоку за единицу времени (называемую квантом), основываясь отчасти на приоритете потока. По истечении выделенного кванта времени выполнение существующего потока приостанавливается для предоставления другому потоку возможности выполнить свою задачу.

Чтобы поток не забывал, на чем он работал перед тем, как его выполнение было приостановлено, каждому потоку предоставляется возможность записывать данные в и выделяется отдельный стек вызовов, как показано на рисунке:

Процессы и потоки Windows

Процессы и потоки Windows

Внутри каждого процесса могут выполняться одна или несколько потоков, и именно поток является базовой единицей выполнения в Windows. Выполнение потоков планируется системой на основе обычных факторов: наличие таких ресурсов, как CPU и физическая память, приоритеты, равнодоступность ресурсов и так далее. Начиная с версии NT4, в Windows поддерживается симметричная многопроцессорная обработка (Symmetric Multiprocessing, SMP), позволяющая распределять выполнение потоков между отдельными процессорами, установленными в системе.

Читайте также:  Hotline miami тема для windows 10

С точки зрения программиста каждому процессу принадлежат ресурсы, представленные следующими компонентами:

• Одна или несколько потоков.

• Виртуальное адресное пространство, отличное от адресных пространств других процессов, если не считать областей памяти, распределенных явным образом для совместного использования (разделения) несколькими процессами. Заметьте, что разделяемые отображенные файлы совместно используют физическую память, тогда как разделяющие их процессы используют различные виртуальные адресные пространства.

• Один или несколько сегментов кода, включая код DLL.

• Один или несколько сегментов данных, содержащих глобальные переменные.

• Строки, содержащие информацию об окружении, например, информацию о текущем пути доступа к файлам.

• Различного рода ресурсы, например, дескрипторы открытых файлов и другие кучи.

Поток разделяет вместе с процессом код, глобальные переменные, строки окружения и другие ресурсы. Каждый поток планируется независимо от других и располагает следующими элементами:

• Стек, используемый для вызова процедур, прерываний и обработчиков исключений, а также хранения автоматических переменных.

• Локальные области хранения потока (Thread Local Storage, SLT) — массивы указателей, используя которые каждый поток может создавать собственную уникальную информационную среду.

• Аргумент в стеке, получаемый от создающего потока, который обычно является уникальным для каждого потока.

• Структура контекста, поддерживаемая ядром системы и содержащая значения машинных регистров.

На рис. 6.1 показан процесс с несколькими потоками. Рисунок является схематическим, поэтому на нем не указаны фактические адреса памяти и не соблюдены масштабы.

В данной главе показано, как работать с процессами, состоящими из единственного потока. О том, как использовать несколько потоков, рассказывается в главе 7.

Примечание

Рисунок 6.1 является высокоуровневым с точки зрения программиста представлением процесса. В действительности эта картина должна быть дополнена множеством технических деталей и особенностями реализации. Более подробную информацию заинтересованные читатели могут найти в книге Соломона (Solomon) и Руссиновича (Russinovich) Inside Windows 2000.

Процессы UNIX сопоставимы с процессами Windows, имеющими единственный поток.

Реализации UNIX недавно пополнились потоками POSIX Pthreads, которые в настоящее время используются почти повсеместно. В [40] потоки не обсуждаются; все рассмотрение основано на процессах.

Наверное, можно было бы даже не напоминать о том, что понятие потоков не является новым, и их различные реализации предлагаются поставщиками уже на протяжении целого ряда лет. Однако потоки Pthreads являются самым распространенным стандартом, в то время как коммерческие реализации потоков являются устаревшими.

Рис. 6.1. Процесс и его потоки

Читайте также

Процессы и потоки

Процессы и потоки В этой главе представлено описание процессов и потоков в QNX/ Neutrino, диспетчеризации, системы приоритетов, и дано понятие о реальном времени. Вы узнаете о состояниях потоков и алгоритмах диспетчеризации, которые применяются в QNX/ Neutrino, а также изучите

Процессы и потоки

Процессы и потоки Вернемся к нашим рассуждениям о потоках и процессах, но на сей раз с точки зрения перспективы их применения в системах реального времени. Затем мы рассмотрим вызовы функций, которые применяются при работе с потоками и процессами.Мы знаем, что процесс

2. Процессы и потоки

2. Процессы и потоки При внимательном чтении технической документации [8] и литературы по ОС QNX [1] отчетливо бросается в глаза, что тонкие детали создания и функционирования процессов и потоков описаны крайне поверхностно и на весьма некачественном уровне. Возможно, это

Потоки

Потоки Последующие расширения[14] POSIX специфицируют широкий спектр механизмов «легких процессов» — потоков (группа API pthread_*()). Техника потоков вводит новую парадигму программирования вместо уже ставших традиционными UNIX-методов. Это обстоятельство часто недооценивается.

Процессы, задачи, задания, группы активизации и потоки

Процессы, задачи, задания, группы активизации и потоки Как уже упоминалось, первоначально в AS/400 было определено три уровня работы. Самый низкий уровень, под MI, — задача. Процесс «живет» на уровне MI и построен на структуре задач SLIC. Поверх модели процессов MI OS/400 в качестве

10.4 ПОТОКИ

10.4 ПОТОКИ Схема реализации драйверов устройств, хотя и отвечает заложенным требованиям, страдает некоторыми недостатками, которые с годами стали заметнее. Разные драйверы имеют тенденцию дублировать свои функции, в частности драйверы, которые реализуют сетевые

1.2. Процессы, потоки и общий доступ к информации

1.2. Процессы, потоки и общий доступ к информации В традиционной модели программирования Unix в системе могут одновременно выполняться несколько процессов, каждому из которых выделяется собственное адресное пространство. Это иллюстрирует рис. 1.1. Рис. 1.1. Совместное

Потоки

Потоки Хотя концепция процессов в системах Unix используется уже очень давно, возможность использовать несколько потоков внутри одного процесса появилась относительно недавно. Стандарт потоков Posix.1, называемый Pthreads, был принят в 1995 году. С точки зрения взаимодействия

38. Потоки

38. Потоки Язык C++ не обладает средствами для ввода/вывода. Ему это и не нужно; подобные средства легко и элегантно можно создать, применяя сам язык. Стандартная библиотека потокового ввода/вывода дает возможность осуществлять гибкий и эффективный с гарантией типа метод

7.3.1.2. Потоки

7.3.1.2. Потоки Потоки (streams) сетевого взаимодействия были разработаны Деннисом Ритчи для Unix Version 8 (1985). Их новая реализация называется STREAMS (именно так, в документации все буквы прописные). Впервые она стала доетупной в версии 3.0 System V Unix (1986). Средство STREAMS обеспечивало

Читайте также:  Api32 dll inpa windows 10

7.3.1.2. Потоки

7.3.1.2. Потоки Потоки (streams) сетевого взаимодействия были разработаны Деннисом Ритчи для Unix Version 8 (1985). Их новая реализация называется STREAMS (именно так, в документации все буквы прописные). Впервые она стала доступной в версии 3.0 System V Unix (1986). Средство STREAMS обеспечивало

2.2.1.1 Потоки

2.2.1.1 Потоки Архитектуру INFORMIX-OnLine DS называют также многопотоковой. Для каждого клиента создается так называемый поток, или нить (thread). Поток — это подзадача, выполняемая в рамках одного из серверных процессов. В некоторых случаях для обслуживания одного клиентского

8.3 Файлы и Потоки

8.3 Файлы и Потоки Потоки обычно связаны с файлами. Библиотека потоков содает стандартный поток ввода cin, стандартный поток вывода cout и стандартный поток ошибок cerr. Программист может отрывать другие файлы и создавать для них

ГЛABA 6 Процессы, потоки и задания

ГЛABA 6 Процессы, потоки и задания B этой главе мы рассмотрим структуры данных и алгоритмы, связанные с процессами, потоками и заданиями в Microsoft Windows. B первом разделе основное внимание уделяется внутренним структурам данных, из которых состоит процесс. Bo втором разделе

Функции для работы с процессами windows

В продолжение рубрики «Основы», сегодня речь пойдет о процессах в Windows. Разберем что это такое, на что они влияют и с помощью чего их можно контролировать.

p, blockquote 1,0,0,0,0 —>

В операционной системе «процессом» является экземпляр компьютерной программы, которая запущенна в данный момент. Сама по себе программа является всего лишь набором правил и кода, тогда как процесс является фактическим выполнением всего этого. Задачи одной и той же программы могут выполняться в нескольких процессах и, естественно, каждому активному процессу требуется определенное количество системных ресурсов, и чем больше их одновременно запущенно, тем медленнее начинает работать компьютер.

p, blockquote 2,0,0,0,0 —>

Многих начинающих пользователей мало интересует, какие скрытые процессы у них работают, а между тем, есть смысл поинтересоваться, не работают ли какие-нибудь фоновые программы и сервисы, в которых нет необходимости и которые при этом впустую расходуют процессорное время и память. Но прежде чем отключать ненужные процессы, чтобы освободить ресурсы компьютера, необходимо научиться разбираться в них, чтобы случайно не затронуть, например, процессы относящиеся к системным, многие из которых запускаются во время старта компьютера и критически необходимы для функционирования операционной системы и других приложений.

p, blockquote 3,0,0,0,0 —>

Следует также упомянуть, что большинство вирусов для осложнения обнаружения маскируют себя под какой-либо из процессов. Именно по этим причинам важно уметь их опознавать и идентифицировать.

p, blockquote 4,0,0,0,0 —>

Для того чтобы увидеть весь список активных процессов необходимо открыть «Диспетчер задач» (Task Manager). Сделать это можно тремя распространенными способами:

p, blockquote 5,0,0,0,0 —>

— комбинация клавиш ctrl + alt + del
— комбинация клавиш ctrl +shift + esc
или
— правый клик мыши на панели задач — пункт «Диспетчер задач».

p, blockquote 6,0,0,0,0 —>

Находясь в окне диспетчера, выберите вкладку «Процессы».

p, blockquote 7,0,0,0,0 —>

p, blockquote 8,0,0,0,0 —>

В открывшемся окне находится несколько столбцов с помощью которых мы и сможем получить первую необходимую информацию о том, какие процессы загружены и сколько ресурсов они потребляют.

p, blockquote 9,0,0,0,0 —>

1. Имя образа — название процесса
2. Пользователь — от какой учетной записи запущен процесс
3. ЦП — показывает загрузку процессора в процентном соотношении
4. Память — выделенный объем оперативной памяти
5. Описание — краткое описание того какая программа, служба или сервис инициирует данный процесс.

p, blockquote 10,0,0,0,0 —>

В самом низу окна показывается суммарное количество активных процессов, общая загрузка процессора и оперативной памяти в процентах.

p, blockquote 11,0,1,0,0 —>

Чтобы отключить ненужный процесс, необходимо выбрать один из них и нажать кнопку «Завершить процесс». Однако простое «Завершение процесса» просто отключит его до следующей перезагрузки Windows. Поэтому, если вы хотите навсегда избавиться от него, необходимо отключить его запуск в самом приложении, которое запускает этот процесс, или отключить активирующую его службу, или убрать из автозагрузки, а может и вовсе удалить ненужное приложение.

p, blockquote 12,0,0,0,0 —>

Если для получения информации о процессе вам будет недостаточно стандартных столбцов, можно добавить дополнительные. Для этого в главном меню Диспетчера задач нажмите «Вид» и в открывшемся меню выберите пункт «Выбрать/Добавить столбцы».

p, blockquote 13,0,0,0,0 —>

p, blockquote 14,0,0,0,0 —>

Выставьте галочки напротив пунктов «ИД процесса (PID)» и «Путь к образу». Нажмите «Ок».

p, blockquote 15,0,0,0,0 —>

p, blockquote 16,0,0,0,0 —>

p, blockquote 17,0,0,0,0 —>

Теперь в столбце ««Путь к образу» вы можете видеть расположение файла, который инициирует запущенный процесс.

p, blockquote 18,0,0,0,0 —>

А информация столбца «ИД процесса (PID)» будет полезна, если вам понадобится узнать, например, какая служба запускает процесс «Svchost.exe».

Читайте также:  Значок apple для windows

p, blockquote 19,0,0,0,0 —>

Заглянув немного вперед, почему мы выбрали именно его в качестве примера. Это важный системный процесс и нужен для включения и управления различных служб. Путаница у многих пользователей с этим процессом возникает от того что одновременно могут быть запущены несколько его экземпляров, но все от разных служб. И для того чтобы понять, какая именно служба относится к отдельно взятому процессу «Svchost.exe», нам и понадобится его числовой идентификатор — PID. Запомнив число, указанное в этом столбце переходим в «Диспетчере Задач» на вкладку «Службы».
Находясь в этом окне, нажмите левой кнопкой мыщи по заголовку столбца «ИД процесса». Список отсортируется и вы без труда сможете найти процесс по PID, посмотрев его описание в соответствующем столбце.

p, blockquote 20,0,0,0,0 —>

p, blockquote 21,0,0,0,0 —>

Сведений в этом окне конечно очень мало, однако позволяет примерно понять, какая именно служба запустила «Svchost.exe». Мы уже упоминали этот процесс в статье «svchost.exe — вирус или нет?»

p, blockquote 22,0,0,0,0 —>

Еще одна возможность увидеть, где располагается файл инициирующий запуск процесса, это нажать правой кнопкой мыши на одном из них и выбрать пункт «Открыть место хранения файла».

p, blockquote 23,1,0,0,0 —>

p, blockquote 24,0,0,0,0 —>

Со временем вы научитесь легко опознавать любые процессы. Для того, чтобы немного облегчить вам эту задачу, ниже приводим список наиболее типичных программных и системных процессов, большинство из которых по умолчанию запускаются вместе с операционной системой.

p, blockquote 25,0,0,0,0 —>

alg.exe — системный процесс. служба, являющаяся одним из компонентов ОС Windows необходимая для доступа к Интеренету и работы Брандмауэра. Если завершить этот процесс то подключение к интернет оборвется до следующей перезагрузки Windows.

p, blockquote 26,0,0,0,0 —>

ati2evxx.exe — является одним из компонентов драйверов для видеокарт AMD/ATI. Осуществляет работу горячих клавиш. Из-за большой нагрузки на ЦП рекомендуется отключить этот процесс и соответствующую службу.

p, blockquote 27,0,0,0,0 —>

BTTray.exe — компонент драйвера Bluetooth от Widcomm. Необходим для их работы.

p, blockquote 28,0,0,0,0 —>

csrss.exe — системный процесс Windows, обеспечивающий работу компонента «клиент/сервер». Не может быть отключен. Наиболее сильно подвержен заражению вирусов.

p, blockquote 29,0,0,0,0 —>

ctfmon.exe — системный процесс, отвечающий за языковую панель, индикатор, отображающий текущую раскладку клавиатуры и обеспечивающий поддержку других альтернативных методов ввода. Отключение этого процесса есстевстенно не рекомендуется.

p, blockquote 30,0,0,0,0 —>

dwm.exe — системный процесс Windows. Интегрирован в систему, начиная с Windows Vista и 7. Отвечает за графические эфекты рабочего стола, окон и меню, а также нормальное функционирование интерфейса «Aero».

p, blockquote 31,0,0,0,0 —>

explorer.exe — критический необходимый системный процесс проводника Windows, отвечающий за отображение рабочего стола и меню, возможность осуществления навигации пользователя. Не стоит его отключать.

p, blockquote 32,0,0,0,0 —>

issch.exe – процесс, позволяющий выполнять проверку обновлений в фоновом режиме стандартного инсталлятора Windows и других программ.

p, blockquote 33,0,0,0,0 —>

jusched.exe – процесс планировщика для автоматической проверки обновлений Java компонентов . Отключить автоматический запуск этого процесса можно путем выключения автоматической проверки обновлений в настройках Java (Пуск-Панель управления-Java).

p, blockquote 34,0,0,1,0 —>

lsass.exe – необходимый системный процесс, отвечающий за работу локального сервера проверки подлинности, политику безопасности и авторизации пользователей. Взаимодействует с службой winlogon. Не может быть завершен.

p, blockquote 35,0,0,0,0 —>

lsm.exe – системный процесс, управляющий удаленными подключениями к локальной системе. Не нужно отключать.

p, blockquote 36,0,0,0,0 —>

rthdcpl.exe – Процесс, обеспечивающий работу контрольной панели Realtek HD Audio. Иконка для этой программы находится в трее, рядом с часами. Завершение этого процесса может вызвать проблемы работы звука на системе.

p, blockquote 37,0,0,0,0 —>

rundll32.exe — Необходимй системный процесс Windows запускаемый утилитой командной строки. Позволяет запускать функции и команды DLL — файлов.

p, blockquote 38,0,0,0,0 —>

services.exe — важный системный процесс, отвечающий за за управление всеми системными службами.

p, blockquote 39,0,0,0,0 —>

smss.exe — необходимый системный процесс, отвечающий за запуск пользовательского сеанса, а также запуск процессов Winlogon и Csrss.exe. Завершать работу этого процесса нельзя.

p, blockquote 40,0,0,0,0 —>

spoolsv.exe — системный процесс. Отвечает за функции печати (принтер, факс и тд.).

p, blockquote 41,0,0,0,0 —>

svchost.exe — один из главных системных процессов, отвечающий за работу целого ряда сервисов и служб. Одновременно может работать несколько его копий, т.к. каждая содержит различные службы.

p, blockquote 42,0,0,0,0 —>

wininit.exe — необходимый системный процесс WIndows. ВЫполняет в фоновом режиме поддержку работы некоторых наиболее важных системных служб и программ, а также отвечает за своевременный запуск элементов автозагрузки.

p, blockquote 43,0,0,0,0 —>

winlogon.exe — Критически важный системный процесс. Отвечает за вход и выход пользователей в систему. Не может быть завершен.

p, blockquote 44,0,0,0,0 —>

wmiprvse.exe — системный процесс, один из компонентов Инструментария управления Windows. Отключение не рекомендуется.

p, blockquote 45,0,0,0,0 —> p, blockquote 46,0,0,0,1 —>

Оцените статью