Где докер хранит образы linux

Понимая Docker

Уже несколько месяцев использую docker для структуризации процесса разработки/доставки веб-проектов. Предлагаю читателям «Хабрахабра» перевод вводной статьи о docker — «Understanding docker».

Что такое докер?

Докер — это открытая платформа для разработки, доставки и эксплуатации приложений. Docker разработан для более быстрого выкладывания ваших приложений. С помощью docker вы можете отделить ваше приложение от вашей инфраструктуры и обращаться с инфраструктурой как управляемым приложением. Docker помогает выкладывать ваш код быстрее, быстрее тестировать, быстрее выкладывать приложения и уменьшить время между написанием кода и запуска кода. Docker делает это с помощью легковесной платформы контейнерной виртуализации, используя процессы и утилиты, которые помогают управлять и выкладывать ваши приложения.

В своем ядре docker позволяет запускать практически любое приложение, безопасно изолированное в контейнере. Безопасная изоляция позволяет вам запускать на одном хосте много контейнеров одновременно. Легковесная природа контейнера, который запускается без дополнительной нагрузки гипервизора, позволяет вам добиваться больше от вашего железа.

Платформа и средства контейнерной виртуализации могут быть полезны в следующих случаях:

  • упаковывание вашего приложения (и так же используемых компонент) в docker контейнеры;
  • раздача и доставка этих контейнеров вашим командам для разработки и тестирования;
  • выкладывания этих контейнеров на ваши продакшены, как в дата центры так и в облака.

Для чего я могу использовать docker?

Быстрое выкладывание ваших приложений

Docker прекрасно подходит для организации цикла разработки. Docker позволяет разработчикам использовать локальные контейнеры с приложениями и сервисами. Что в последствии позволяет интегрироваться с процессом постоянной интеграции и выкладывания (continuous integration and deployment workflow).

Например, ваши разработчики пишут код локально и делятся своим стеком разработки (набором docker образов) с коллегами. Когда они готовы, отравляют код и контейнеры на тестовую площадку и запускают любые необходимые тесты. С тестовой площадки они могут оправить код и образы на продакшен.

Более простое выкладывание и разворачивание

Основанная на контейнерах docker платформа позволят легко портировать вашу полезную нагрузку. Docker контейнеры могут работать на вашей локальной машине, как реальной так и на виртуальной машине в дата центре, так и в облаке.

Портируемость и легковесная природа docker позволяет легко динамически управлять вашей нагрузкой. Вы можете использовать docker, чтобы развернуть или погасить ваше приложение или сервисы. Скорость docker позволяет делать это почти в режиме реального времени.

Высокие нагрузки и больше полезных нагрузок

Docker легковесен и быстр. Он предоставляет устойчивую, рентабельную альтернативу виртуальным машинам на основе гипервизора. Он особенно полезен в условиях высоких нагрузок, например, при создания собственного облака или платформа-как-сервис (platform-as-service). Но он так же полезен для маленьких и средних приложений, когда вам хочется получать больше из имеющихся ресурсов.

Главные компоненты Docker

Docker состоит из двух главных компонент:

  • Docker: платформа виртуализации с открытым кодом;
  • Docker Hub: наша платформа-как-сервис для распространения и управления docker контейнерами.

Примечание! Docker распространяется по Apache 2.0 лицензии.

Архитектура Docker

Docker использует архитектуру клиент-сервер. Docker клиент общается с демоном Docker, который берет на себя тяжесть создания, запуска, распределения ваших контейнеров. Оба, клиент и сервер могут работать на одной системе, вы можете подключить клиент к удаленному демону docker. Клиент и сервер общаются через сокет или через RESTful API.

Docker-демон

Как показано на диаграмме, демон за пускается на хост-машине. Пользователь не взаимодействует с сервером на прямую, а использует для этого клиент.

Docker-клиент

Docker-клиент, программа docker — главный интерфейс к Docker. Она получает команды от пользователя и взаимодействует с docker-демоном.

Внутри docker-а

Чтобы понимать, из чего состоит docker, вам нужно знать о трех компонентах:

  • образы (images)
  • реестр (registries)
  • контейнеры

Образы

Docker-образ — это read-only шаблон. Например, образ может содержать операционку Ubuntu c Apache и приложением на ней. Образы используются для создания контейнеров. Docker позволяет легко создавать новые образы, обновлять существующие, или вы можете скачать образы созданные другими людьми. Образы — это компонента сборки docker-а.

Реестр

Docker-реестр хранит образы. Есть публичные и приватные реестры, из которых можно скачать либо загрузить образы. Публичный Docker-реестр — это Docker Hub. Там хранится огромная коллекция образов. Как вы знаете, образы могут быть созданы вами или вы можете использовать образы созданные другими. Реестры — это компонента распространения.

Контейнеры

Контейнеры похожи на директории. В контейнерах содержится все, что нужно для работы приложения. Каждый контейнер создается из образа. Контейнеры могут быть созданы, запущены, остановлены, перенесены или удалены. Каждый контейнер изолирован и является безопасной платформой для приложения. Контейнеры — это компонента работы.

Читайте также:  Где хранится sam файл windows

Так как же работает Docker?

Пока мы знаем, что:

  • можем создавать образы, в которых находятся наши приложения;
  • можем создавать контейнеры из образов, для запуска приложений;
  • можем распространять образы через Docker Hub или другой реестр образов.

Давайте посмотрим, как эти компоненты сочетаются.

Как работает образ?

Мы уже знаем, что образ — это read-only шаблон, из которого создается контейнер. Каждый образ состоит из набора уровней. Docker использует union file system для сочетания этих уровней в один образ. Union file system позволяет файлам и директориями из разных файловых систем (разным ветвям) прозрачно накладываться, создавая когерентную файловую систему.

Одна из причин, по которой docker легковесен — это использование таких уровней. Когда вы изменяете образ, например, обновляете приложение, создается новый уровень. Так, без замены всего образа или его пересборки, как вам возможно придётся сделать с виртуальной машиной, только уровень добавляется или обновляется. И вам не нужно раздавать весь новый образ, раздается только обновление, что позволяет распространять образы проще и быстрее.

В основе каждого образа находится базовый образ. Например, ubuntu, базовый образ Ubuntu, или fedora, базовый образ дистрибутива Fedora. Так же вы можете использовать образы как базу для создания новых образов. Например, если у вас есть образ apache, вы можете использовать его как базовый образ для ваших веб-приложений.

Примечание! Docker обычно берет образы из реестра Docker Hub.

Docker образы могут создаться из этих базовых образов, шаги описания для создания этих образов мы называем инструкциями. Каждая инструкция создает новый образ или уровень. Инструкциями будут следующие действия:

  • запуск команды
  • добавление файла или директории
  • создание переменной окружения
  • указания что запускать когда запускается контейнер этого образа

Эти инструкции хранятся в файле Dockerfile . Docker считывает это Dockerfile , когда вы собираете образ, выполняет эти инструкции, и возвращает конечный образ.

Как работает docker реестр?

Реестр — это хранилище docker образов. После создания образа вы можете опубликовать его на публичном реестре Docker Hub или на вашем личном реестре.

С помощью docker клиента вы можете искать уже опубликованные образы и скачивать их на вашу машину с docker для создания контейнеров.

Docker Hub предоставляет публичные и приватные хранилища образов. Поиск и скачивание образов из публичных хранилищ доступно для всех. Содержимое приватных хранилищ не попадает в результат поиска. И только вы и ваши пользователи могут получать эти образы и создавать из них контейнеры.

Как работает контейнер?

Контейнер состоит из операционной системы, пользовательских файлов и метаданных. Как мы знаем, каждый контейнер создается из образа. Этот образ говорит docker-у, что находится в контейнере, какой процесс запустить, когда запускается контейнер и другие конфигурационные данные. Docker образ доступен только для чтения. Когда docker запускает контейнер, он создает уровень для чтения/записи сверху образа (используя union file system, как было указано раньше), в котором может быть запущено приложение.

Что происходит, когда запускается контейнер?

Или с помощью программы docker , или с помощью RESTful API, docker клиент говорит docker демону запустить контейнер.

$ sudo docker run -i -t ubuntu /bin/bash

Давайте разберемся с этой командой. Клиент запускается с помощью команды docker , с опцией run , которая говорит, что будет запущен новый контейнер. Минимальными требованиями для запуска контейнера являются следующие атрибуты:

  • какой образ использовать для создания контейнера. В нашем случае ubuntu
  • команду которую вы хотите запустить когда контейнер будет запущен. В нашем случае /bin/bash

Что же происходит под капотом, когда мы запускаем эту команду?

Docker, по порядку, делает следующее:

  • скачивает образ ubuntu: docker проверяет наличие образа ubuntu на локальной машине, и если его нет — то скачивает его с Docker Hub. Если же образ есть, то использует его для создания контейнера;
  • создает контейнер: когда образ получен, docker использует его для создания контейнера;
  • инициализирует файловую систему и монтирует read-only уровень: контейнер создан в файловой системе и read-only уровень добавлен образ;
  • инициализирует сеть/мост: создает сетевой интерфейс, который позволяет docker-у общаться хост машиной;
  • Установка IP адреса: находит и задает адрес;
  • Запускает указанный процесс: запускает ваше приложение;
  • Обрабатывает и выдает вывод вашего приложения: подключается и логирует стандартный вход, вывод и поток ошибок вашего приложения, что бы вы могли отслеживать как работает ваше приложение.

Теперь у вас есть рабочий контейнер. Вы можете управлять своим контейнером, взаимодействовать с вашим приложением. Когда решите остановить приложение, удалите контейнер.

Используемые технологии

Докер написан на Go и использует некоторые возможности ядра Linux, чтобы реализовать приведенный выше функционал.

Пространство имен(namespaces)

Docker использует технологию namespaces для организации изолированных рабочих пространств, которые мы называем контейнерами. Когда мы запускаем контейнер, docker создает набор пространств имен для данного контейнера.

Это создает изолированный уровень, каждый аспект контейнера запущен в своем простанстве имен, и не имеет доступ к внешней системе.

Список некоторых пространств имен, которые использует docker:

  • pid: для изоляции процесса;
  • net: для управления сетевыми интерфейсами;
  • ipc: для управления IPC ресурсами. (ICP: InterProccess Communication);
  • mnt: для управления точками монтирования;
  • utc: для изолирования ядра и контроля генерации версий(UTC: Unix timesharing system).
Читайте также:  Ati mobility radeon x1270 windows 10

Control groups (контрольные группы)

Docker также использует технологию cgroups или контрольные группы. Ключ к работе приложения в изоляции, предоставление приложению только тех ресурсов, которые вы хотите предоставить. Это гарантирует, что контейнеры будут хорошими соседями. Контрольные группы позволяют разделять доступные ресурсы железа и если необходимо, устанавливать пределы и ограничения. Например, ограничить возможное количество памяти контейнеру.

Union File System

Union File Sysem или UnionFS — это файловая система, которая работает создавая уровни, делая ее очень легковесной и быстрой. Docker использует UnionFS для создания блоков, из которых строится контейнер. Docker может использовать несколько вариантов UnionFS включая: AUFS, btrfs, vfs и DeviceMapper.

Источник

Образы и контейнеры Docker в картинках

Перевод поста Visualizing Docker Containers and Images, от новичка к новичкам, автор на простых примерах объясняет базовые сущности и процессы в использовании docker.

Если вы не знаете, что такое Docker или не понимаете, как он соотносится с виртуальными машинами или с инструментами configuration management, то этот пост может показаться немного сложным.

Пост предназначен для тех, кто пытается освоить docker cli, понять, чем отличается контейнер и образ. В частности, будет объяснена разница между просто контейнером и запущенным контейнером.

В процессе освоения нужно представить себе некоторые лежащие в основе детали, например, слои файловой системы UnionFS. В течение последней пары недель я изучал технологию, я новичок в мире docker, и командная строка docker показалась мне довольно сложной для освоения.

По-моему, понимание того, как технология работает изнутри — лучший способ быстро освоить новый инструмент и правильно его использовать. Часто новая технология разрабатывает новые модели абстракций и привносит новые термины и метафоры, которые могут быть как будто бы понятны в начале, но без четкого понимания затрудняют последующее использование инструмента.

Хорошим примером является Git. Я не мог понять Git, пока не понял его базовую модель, включая trees, blobs, commits, tags, tree-ish и прочее. Я думаю, что люди, не понимающие внутренности Git, не могут мастерски использовать этот инструмент.

Определение образа (Image)

Визуализация образа представлена ниже в двух видах. Образ можно определить как «сущность» или «общий вид» (union view) стека слоев только для чтения.

Слева мы видим стек слоев для чтения. Они показаны только для понимания внутреннего устройства, они доступны вне запущенного контейнера на хост-системе. Важно то, что они доступны только для чтения (иммутабельны), а все изменения происходят в верхнем слое стека. Каждый слой может иметь одного родителя, родитель тоже имеет родителя и т.д. Слой верхнего уровня может быть использован как UnionFS (AUFS в моем случае с docker) и представлен в виде единой read-only файловой системы, в которой отражены все слои. Мы видим эту «сущность» образа на рисунке справа.

Если вы захотите посмотреть на эти слои в первозданном виде, вы можете найти их в файловой системе на хост-машине. Они не видны напрямую из запущенного контейнера. На моей хост-машине я могу найти образы в /var/lib/docker/aufs.

Определение контейнера (Container)

Контейнер можно назвать «сущностью» стека слоев с верхним слоем для записи.

На изображении выше показано примерно то же самое, что на изображении про образ, кроме того, что верхний слой доступен для записи. Вы могли заметить, что это определение ничего не говорит о том, запущен контейнер или нет и это неспроста. Разделение контейнеров на запущенные и не запущенные устранило путаницу в моем понимании.

Контейнер определяет лишь слой для записи наверху образа (стека слоев для чтения). Он не запущен.

Определение запущенного контейнера

Запущенный контейнер — это «общий вид» контейнера для чтения-записи и его изолированного пространства процессов. Ниже изображен контейнер в своем пространстве процессов.

Изоляция файловой системы обеспечивается технологиями уровня ядра, cgroups, namespaces и другие, позволяют докеру быть такой перспективной технологией. Процессы в пространстве контейнера могут изменять, удалять или создавать файлы, которые сохраняются в верхнем слое для записи. Смотрите изображение:

Чтобы проверить это, выполните команду на хост-машине:

Вы можете найти новый файл в слое для записи на хост-машине, даже если контейнер не запущен.

Определение слоя образа (Image layer)

Наконец, мы определим слой образа. Изображение ниже представляет слой образа и дает нам понять, что слой — это не просто изменения в файловой системе.

Метаданные — дополнительная информация о слое, которая позволяет докеру сохранять информацию во время выполнения и во время сборки. Оба вида слоев (для чтения и для записи) содержат метаданные.

Кроме того, как мы уже упоминали раньше, каждый слой содержит указатель на родителя, используя id (на изображении родительские слои внизу). Если слой не указывает на родительский слой, значит он наверху стека.

Расположение метаданных

На данный момент (я понимаю, что разработчики docker могут позже сменить реализацию), метаданные слоев образов (для чтения) находятся в файле с именем «json» в папке /var/lib/docker/graph/id_слоя:

Читайте также:  Grub2 установка windows iso

где «e809f156dc985. » — урезанный id слоя.

Свяжем все вместе

Теперь, давайте посмотрим на команды, иллюстрированные понятными картинками.

docker create

До:

После:

Команда ‘docker create’ добавляет слой для записи наверх стека слоев, найденного по . Команда не запускает контейнер.

docker start

До:

После:

Команда ‘docker start’ создает пространство процессов вокруг слоев контейнера. Может быть только одно пространство процессов на один контейнер.

docker run

До:

После:

Один из первых вопросов, который задают люди (я тоже задавал): «В чем разница между ‘docker start’ и ‘docker run’?» Одна из первоначальных целей этого поста — объяснить эту тонкость.

Как мы видим, команда ‘docker run’ находит образ, создает контейнер поверх него и запускает контейнер. Это сделано для удобства и скрывает детали двух команд.

Продолжая сравнение с освоением Git, я скажу, что ‘docker run’ очень похожа на ‘git pull’. Так же, как и ‘git pull’ (который объединяет ‘git fetch’ и ‘git merge’), команда ‘docker run’ объединяет две команды, которые могут использоваться и независимо. Это удобно, но поначалу может ввести в заблуждение.

docker ps

Команда ‘docker ps’ выводит список запущенных контейнеров на вашей хост-машине. Важно понимать, что в этот список входят только запущенные контейнеры, не запущенные контейнеры скрыты. Чтобы посмотреть список всех контейнеров, нужно использовать следующую команду.

docker ps -a

Команда ‘docker ps -a’, где ‘a’ — сокращение от ‘all’ выводит список всех контейнеров, независимо от их состояния.

docker images

Команда ‘docker images’ выводит список образов верхнего уровня (top-level images). Фактически, ничего особенного не отличает образ от слоя для чтения. Только те образы, которые имеют присоединенные контейнеры или те, что были получены с помощью pull, считаются образами верхнего уровня. Это различие нужно для удобства, так как за каждым образом верхнего уровня может быть множество слоев.

docker images -a

Команда ‘docker images -a’ выводит все образы на хост-машине. Это фактически список всех слоев для чтения в системе. Если вы хотите увидеть все слои одного образа, воспользуйтесь командой ‘docker history’.

docker stop

До:

После:

Команда ‘docker stop’ посылает сигнал SIGTERM запущенному контейнеру, что мягко останавливает все процессы в пространстве процессов контейнера. В результате мы получаем не запущенный контейнер.

docker kill

До:

После:

Команда ‘docker kill’ посылает сигнал SIGKILL, что немедленно завершает все процессы в текущем контейнере. Это почти то же самое, что нажать Ctrl+\ в терминале.

docker pause

До:

После:

В отличие от ‘docker stop’ и ‘docker kill’, которые посылают настоящие UNIX сигналы процессам контейнера, команда ‘docker pause’ используют специальную возможность cgroups для заморозки запущенного пространства процессов. Подробности можно прочитать здесь, если вкратце, отправки сигнала Ctrl+Z (SIGTSTP) не достаточно, чтобы заморозить все процессы в пространстве контейнера.

docker rm

До:

После:

Команда ‘docker rm’ удаляет слой для записи, который определяет контейнер на хост-системе. Должна быть запущена на остановленном контейнерах. Удаляет файлы.

docker rmi

До:

После:

Команда ‘docker rmi’ удаляет слой для чтения, который определяет «сущность» образа. Она удаляет образ с хост-системы, но образ все еще может быть получен из репозитория через ‘docker pull’. Вы можете использовать ‘docker rmi’ только для слоев верхнего уровня (или образов), для удаления промежуточных слоев нужно использовать ‘docker rmi -f’.

docker commit

До:
или

После:

Команда ‘docker commit’ берет верхний уровень контейнера, тот, что для записи и превращает его в слой для чтения. Это фактически превращает контейнер (вне зависимости от того, запущен ли он) в неизменяемый образ.

docker build

До:
Dockerfile и

После:

Со многими другими слоями.

Команда ‘docker build’ интересна тем, что запускает целый ряд команд:

На изображении выше мы видим, как команда build использует значение инструкции FROM из файла Dockerfile как базовый образ после чего:

1) запускает контейнер (create и start)
2) изменяет слой для записи
3) делает commit
На каждой итерации создается новый слой. При исполнении ‘docker build’ может создаваться множество слоев.

docker exec

До:

После:

Команда ‘docker exec’ применяется к запущенному контейнеру, запускает новый процесс внутри пространства процессов контейнера.

docker inspect |

До:
или

После:

Команда ‘docker inspect’ получает метаданные верхнего слоя контейнера или образа.

docker save

До:

После:

Команда ‘docker save’ создает один файл, который может быть использован для импорта образа на другую хост-систему. В отличие от команды ‘export’, она сохраняет все слои и их метаданные. Может быть применена только к образам.

docker export

До:

После:

Команда ‘docker export’ создает tar архив с содержимым файлов контейнера, в результате получается папка, пригодная для использования вне docker. Команда убирает слои и их метаданные. Может быть применена только для контейнеров.

docker history

До:

После:

Команда ‘docker history’ принимает и рекурсивно выводит список всех слоев-родителей образа (которые тоже могут быть образами)

Источник

Оцените статью