- Energy for Windows
- Еще по теме:
- Новости
- Scientists unveil energy-generating window
- Power-Generating Windows Offer New Horizons for Office Energy Efficiency
- www.makeuseof.com
- Follow MUO
- 10 Unbelievable New Ways of Generating Electricity
- 1. Harvesting Body Heat
- 2. Confiscated Alcohol
- 3. Used Adult Diapers
- 4. On the Dance Floor
- 5. Thorium Reactors
- 6. Solar Power in Space
- 7. Solar Wind
- 8. Jellyfish
- 9. Harvesting and Recycling Radio Waves
- 10. Out of Thin Air
- Renewable Power Sources Will Save the Planet
- Subscribe To Our Newsletter
- One More Step…!
Energy for Windows
Программа “Energy for Windows” предназначена для сбора на персональном компьютере информации о потреблении электроэнергии (других видов учитываемых ресурсов), изучения динамики потребления, для анализа данных и подготовки печатных отчетных форм. Программа позволяет:
- Проводить опрос сумматоров СЭМ-1, СЭМ-2, СЭМ-2+ и преобразователей ПРТ, установленных на предприятии(ях) в составе систем АСКУЭ. Опрос производится с помощью телефонного модема либо по кабельному соединению компьютер-контроллер.
- Сохранять и накапливать в базе данных принятую из контроллеров информацию, а именно:
- значения трехминутной мощности по двухчасовым интервалам,
- значения получасовой мощности по суткам,
- максимумы мощности по четырем тарифным зонам по дням месяца,
- максимумы мощности по четырем тарифным зонам по месяцам года,
- энергию по дням месяца по тарифным зонам,
- суммарную энергию за месяц по тарифным зонам,
- показания счетчиков,
- журнал событий сумматоров,
- технологические параметры контроллеров,
- векторные диаграммы со счетчиков
- Просматривать, анализировать и выводить на печатающие устройства графическое либо табличное представление перечисленных данных.
- На основе накопленной информации автоматически выдавать печатные формы:
- первичный протокол,
- суммарный протокол,
- сводную таблицу максимумов мощности,
- журнал учета и контроля электроэнергии,
- таблицу потребления по группам за произвольный период,
- отчет об электропотреблении за месяц (по четырем и пяти тарифам),
- подсчет времени работы оборудования,
- фактическое потребление потребителя (каналы и группы),
- расчет энергии по сменам за месяц,
- расчет максимальной усредненной мощности (для РФ, с учетом выходных и праздничных дней),
- акт снятия показаний (по группам программы)
Программа поставляется в виде инсталляционного CD, данного описания на бумажном носителе и электронного ключа. Минимальные системные требования: Windows 98 SE, 512 MB ОЗУ, разрешение экрана 1024х768, от 20 MB на жестком диске.
- Инсталяция Energy for Windows
Описание - Обновление Energy for Windows
Подробнее об установке обновления - Драйвер электронного ключа Sentinel (ключ LPT или черный USB)
- Драйвер электронного ключа WINBOX (ключ USB зеленый-полупрозрачный)
Еще по теме:
Новости
Обновление программы CUBExplorer до версии 21.01 и автоопроса. 24.05.2018
Обновлена информация о преобразователе Ethernet-RS232/4RS485 24.05.2018
Обновление ПО EnergyControlCenter до 21.30:
EnergyControlCenter.zip 23.05.2018
Добавлена краткая информация об УСПД КУБ-1М 21.05.2018
Scientists unveil energy-generating window
Scientists in China said Thursday they had designed a «smart» window that can both save and generate energy, and may ultimately reduce heating and cooling costs for buildings.
While allowing us to feel close to the outside world, windows cause heat to escape from buildings in winter and let the Sun’s unwanted rays enter in summer.
This has sparked a quest for «smart» windows that can adapt to weather conditions outside.
Today’s smart windows are limited to regulating light and heat from the sun, allowing a lot of potential energy to escape, study co-author Yanfeng Gao of the Chinese Academy of Sciences told AFP.
«The main innovation of this work is that it developed a concept smart window device for simultaneous generation and saving of energy.»
Engineers have long battled to incorporate energy-generating solar cells into window panes without affecting their transparency.
Gao’s team discovered that a material called vanadium oxide (VO2) can be used as a transparent coating to regulate infrared radiation from the Sun.
VO2 changes its properties based on temperature. Below a certain level it is insulating and lets through infrared light, while at another temperature it becomes reflective.
A window in which VO2 was used could regulate the amount of Sun energy entering a building, but also scatter light to solar cells the team had placed around their glass panels, where it was used to generate energy with which to light a lamp, for example.
«This smart window combines energy-saving and generation in one device, and offers potential to intelligently regulate and utilise solar radiation in an efficient manner,» the study authors wrote in the journal Nature Scientific Reports.
Power-Generating Windows Offer New Horizons for Office Energy Efficiency
Such power-generating windows might offer remarkable potential as an inexpensive source of solar energy that can attract many new renewable energy champions whose budgets have previously been restrictive in converting to solar energy. […]
For solar enthusiasts on limited budgets, rooftop panels are no longer the only way to produce clean electricity. Try all of the south-facing windows, instead.
According to a recent news release from Delft University of Technology, “New Insights Into Power-Generating Windows,” Jan Willem Wiegman will graduate from TU Delft with with an Applied Physics Masters and his research into power-generating windows. As a student, he calculated how much electricity can be generated using luminescent solar concentrators. Importantly, these are not costly new windows he’s talking about, just windows that are fitted with a thin film of material, which absorbs sunlight, then directs it to narrow solar cells at the perimeter of the window. Wiegman shows the relationship between the colour of the material used and the maximum amount of power that can be generated.
Such power-generating windows might offer remarkable potential as an inexpensive source of solar energy that can attract many new renewable energy champions whose budgets have previously been restrictive in converting to solar energy.
For those wishing to dig deeper into the technology, Wiegman’s research article, written with his supervisor at TU Delft, Erik van der Kolk, has been published in the journal Solar Energy Materials and Solar Cells.
Urban office towers may be likely candidates for this energy generating application, as the majority of them feature more window square footage than what’s on the roof.
“Windows and glazed facades of office blocks and houses can be used to generate electricity if they are used as luminescent solar concentrators. This entails applying a thin layer (for example a foil or coating) of luminescent material to the windows, with narrow solar cells at the perimeters. The luminescent layer absorbs sunlight and guides it to the solar cells at the perimeter, where it is converted into electricity. This enables a large surface area of sunlight to be concentrated on a narrow strip of solar cells.”
Color is also part of how this technology works best. Luminescent solar concentrators are capable of generating dozens of watts per square meter, however, the amount of power produced depends on the color and quality of the light-emitting layer. Wiegman’s research shows a relationship between the color of the film or coating and the maximum amount of power.
A transparent film can produce a maximum of 20 watts per square meter — not quite enough to power a building, but certainly enough to power office equipment. A computer would need a window measuring 4 square metres. The efficiency increases if the film is able to absorb more light particles. This can be achieved by using a foil that absorbs light particles from a certain part of the solar spectrum. A foil that mainly absorbs the blue, violet and green light particles will give the window a red colour. Another option is to use a foil that absorbs all the colours of the solar spectrum equally. This would give the window a grey tint. Both the red and the grey film have an efficiency of 9 percent, which is comparable to the efficiency of flexible solar cells.
www.makeuseof.com
Follow MUO
10 Unbelievable New Ways of Generating Electricity
Alternative ways of generating electricity are here! Learn more about the most amazing new ways of creating energy available today.
Civilization is under threat. It seems clear that traditional methods of generating electricity are unsustainable and we must find new ways to generate electricity that do not produce as much carbon (or dust off old ones, like natural gas and nuclear power).
The need for alternative power sources isn’t new. We’ve seen massive solar arrays unveiled in vast deserts, enormous on-and-offshore windfarms, wave-beams converting the power of our oceans, and biomass solutions arrive and disappear.
However, these forms of alternative energy are not the only game in town. Here are 10 new ways to generate electricity.
1. Harvesting Body Heat
Several major cities have established projects that harvest heat trapped in their vast metro systems. The millions of commuters, plus the train engines and brakes, operating in the sealed metro environment generates a huge amount of heat.
Metro operators have long been aware of the heat issue, too, having to spend considerable amounts of money to dissipate the heat through conventional means. However, metro operators are now putting that excess heat to better use: powering and heating local houses and businesses. In London, hundreds of homes around Highbury & Islington are part of a scheme to harvest heat from the London Underground, while similar schemes exist across Europe.
But it isn’t just underground metro services harvesting and converting heat. For example, The 2.5 million-square-foot shopping mecca, Mall of America, utilizes the heat generated by the sheer volume of people passing through it. This heat combats the usually harsh Minnesotan winter—so much so that the building has no traditional central heating system—innovative thinking for the designers, way back in the early 90s.
2. Confiscated Alcohol
When life gives you lemons, burn the lemons, and use them to power trains.
Sweden’s national customs service confiscates hundreds of thousands of illegally smuggled alcohol each year. Rather than pour it all down the drain, which is a waste, why not convert it into something useful?
Working with Svensk Biogas AB, the Swedish customs agency aims to continue converting this free resource into power for as long as smugglers keep attempting to cross the border. By 2013, bus fleets in more than a dozen Swedish cities ran on biogas, though not all from the smuggled alcohol.
3. Used Adult Diapers
Japan’s population is getting old fast. While the aging Japanese population may be of wider economic concern, Tottori-based Super Faiths Inc.’s innovative SFD Recycling System sees the burden as a power-solution and is certainly an interesting alternative way of generating electricity.
The SFD Recycling System takes used diapers, then sterilizes, pulverizes, and dries them in their patented machine, returning biomass pellets ready for burning in the appropriate furnace, returning around 5,000 kcal per kg recycled.
Not a bad return for an entirely useless landfill article. Capable of «servicing» around 700lb of used diapers per day, the system could well make its way into retirement homes and large hospitals.
4. On the Dance Floor
The kinetic energy generated by our everyday tasks is under the spotlight as underground stations, nightclubs, and gyms begin to utilize piezoelectric harvesting technologies. Piezoelectricity is generated in certain crystals in response to compression force. If you have a surface that’s moving for any reason, you can attach piezoelectric crystals to it and get small amounts of energy out.
The accumulated electrical energy can be used to power services within the same building or area or routed to a new location. Piezoelectricity isn’t an entirely new phenomenon, with DARPA evaluating piezoelectric generators in the boots of soldiers.
However, we utilize piezoelectricity more often than you might think: electric cigarette lighters feature a piezoelectric crystal with sufficient voltage to ignite the gas, resulting in a flame.
In the wild, we have seen Tokyo underground station power its ticket turnstiles and the world’s first sustainable nightclub in Rotterdam, the Netherlands. Piezoelectric energy-generation is also moving into the rail-sector.
In collaboration with the Technion University and renewable energy company Innowatech, Israel Railways installed 32 piezoelectric energy capture devices along a reasonably busy section of railway, harvesting some 120 kWh, enough to power signals lights and track mechanisms.
5. Thorium Reactors
Miniature nuclear reactors powered by just one ton of radioactive thorium could feature in a new generation of local power generation schemes. That said, thorium reactors would require high-energy neutrons to trigger their fissile activity, which has led British scientists to begin work on miniature particle accelerators.
A prototype, the Electron Model of Many Applications, or EMMA, operates at around 20 million electron volts, or 20MeV, which is a strong start. That said, a fair degree of skepticism remains around the use of thorium and the practicalities of building and maintaining a larger number of local nuclear reactors.
6. Solar Power in Space
What could be more exciting or futuristic than a massive solar array, floating on a platform above the planet, beaming wireless electricity toward the Earth’s surface. There are many advantages to this option: no need to take up valuable real estate on Earth and no energy fluctuations caused by weather.
That said, there is a long way to go with this form of alternative electricity generation. Wireless electricity transmission, long-term radiation shielding, meteorite protection, and the sheer cost of putting the equipment into orbit are just some of the stumbling blocks.
But John C. Mankins, President of the Space Power Association and Artemis Innovation, believes that just as nuclear power has received decades of research and billions of dollars of research funding, why shouldn’t there be a serious financial effort toward harvesting solar power from space?
In practice, a space solar power project might work something like this:
- A large geostationary array would collect and focus light from the sun.
- Photo-voltaic cells would convert that light into electricity.
- That electricity would be used to power a microwave laser, aimed towards a ground station on Earth.
- Microwave energy would be received by the antenna array and converted back into electricity.
7. Solar Wind
While we’re on the subject of space, let’s talk about solar wind.
The solar wind consists of an enormous number of charged particles emitted by the sun at extremely high speeds. In principle, these particles can generate electricity by using an enormous solar sail and a charged wire, which generates energy from the solar wind passing along it.
According to a preliminary analysis by the University of Washington, the amount of power you can generate is essentially limitless, constrained only by the size of the solar sail you deploy.
- Three hundred meters of copper wire, attached to a two-meter wide receiver and a 10-meter sail, could generate sufficient electricity for 1,000 households.
- A satellite with a 1,000-meter cable and a sail 8,400km wide could generate one billion billion gigawatts of power.
Sounds good? It would be—if we could produce and launch such a solar sail into an appropriate orbit.
It’s worth noting that that isn’t as far-fetched as you might think. Japan’s Aerospace Exploration Agency successfully launched IKAROS (Interplanetary Kite-craft Accelerated by Radiation of the Sun) in 2010, becoming the first spacecraft to utilize solar-sailing as its main form of propulsion. Their continued exploration is providing immensely valuable data to research scientists in several key areas.
That said, IKAROS is much smaller than the sails considered, so don’t hold your breath for solar wind to become a practical option in the immediate future.
In 2019, The Planetary Society deployed LightSail 2 as a secondary payload on one of SpaceX’s Falcon Heavy rockets. The LightSail 2 successfully deployed its sail, although its overall success is limited. In The Planetary Society’s words, «About one-third of the time, we [LightSail 2] have been in ‘detumble’ mode, reducing the momentum wheel speed and allowing our torque rods to remove angular momentum from the system.»
8. Jellyfish
Our oceans are becoming more acidic. As such, Jellyfish populations are soaring. Most of them aren’t for human consumption, but they may prove more useful for another global issue. Swedish researchers have been steadily liquifying large numbers of Aequorea victoria, a glowing jellyfish common to North America’s shores.
The Green Fluorescent Protein (GFP) contained within the jellyfish can be used to create miniature fuel-cells that could be used to power a generation of medical nano-devices. GFP, applied to aluminum electrodes and exposed to ultra-violet light, generates power measuring in the «tens of nano-amperes.»
It’s not insignificant. The development of biological fuels could enable further research into bio-nano technologies that require no external fuel or electrical current to continue functioning. If the technology could be scaled-up, it could be extremely useful in the long-run, especially if our oceanic acidity issue continues.
9. Harvesting and Recycling Radio Waves
A research team focusing on recycling radio waves is hoping to deploy their technology across multiple sites. The idea of harvesting and recycling radio waves and other electromagnetic waves isn’t entirely new, but the harvesting scale is increasing.
The research team, led by Manos Tentzeris, has developed the technology to recycle and collect energy from multiple sources, including Wi-Fi, TV channels, handheld electronic devices, and much more. The collection process uses ultra-wideband antennas that can receive a huge range of signals across different frequency ranges.
Radio signals and other electromagnetic frequencies are constantly transmitting all around us. Turning some of those frequencies back into energy would be a game-changer and a highly innovative method of electricity generation.
10. Out of Thin Air
The holy grail of energy and electricity production is to create it from thin air, creating an endless and inexhaustible energy source. A research team at the University of Massachusetts Amherst believes they have created a device that uses a natural protein to create electricity from the moisture present in the air.
«Air-gen» uses tiny electrically conductive protein-based nanowires. The research team connects the nanowires to a generator, which generates electricity from the humidity and moisture in the air.
At the time of writing, the project remains small scale. But the eventual goal is to scale up to full electricity production.
Renewable Power Sources Will Save the Planet
Some of the energy sources we’ve looked at here are bizarre, but many may have practical applications down the line. Others are already around us, providing us with alternative energy in our day-to-day.
This energy research is critical if we want to stop the planet from wiping us out completely. The planet will survive—we won’t.
Power supply fluctuations can damage your devices. To protect your electronics, you’ll want the best surge protector for your home.
Gavin is the Junior Editor for Windows and Technology Explained, a regular contributor to the Really Useful Podcast, and was the Editor for MakeUseOf’s crypto-focused sister site, Blocks Decoded. He has a BA (Hons) Contemporary Writing with Digital Art Practices pillaged from the hills of Devon, as well as over a decade of professional writing experience. He enjoys copious amounts of tea, board games, and football.
Subscribe To Our Newsletter
Join our newsletter for tech tips, reviews, free ebooks, and exclusive deals!
One More Step…!
Please confirm your email address in the email we just sent you.