Hook all windows messages

SetWindowsHookExA function (winuser.h)

Installs an application-defined hook procedure into a hook chain. You would install a hook procedure to monitor the system for certain types of events. These events are associated either with a specific thread or with all threads in the same desktop as the calling thread.

Syntax

Parameters

The type of hook procedure to be installed. This parameter can be one of the following values.

Value Meaning
WH_CALLWNDPROC 4 Installs a hook procedure that monitors messages before the system sends them to the destination window procedure. For more information, see the CallWndProc hook procedure.
WH_CALLWNDPROCRET 12 Installs a hook procedure that monitors messages after they have been processed by the destination window procedure. For more information, see the CallWndRetProc hook procedure.
WH_CBT 5 Installs a hook procedure that receives notifications useful to a CBT application. For more information, see the CBTProc hook procedure.
WH_DEBUG 9 Installs a hook procedure useful for debugging other hook procedures. For more information, see the DebugProc hook procedure.
WH_FOREGROUNDIDLE 11 Installs a hook procedure that will be called when the application’s foreground thread is about to become idle. This hook is useful for performing low priority tasks during idle time. For more information, see the ForegroundIdleProc hook procedure.
WH_GETMESSAGE 3 Installs a hook procedure that monitors messages posted to a message queue. For more information, see the GetMsgProc hook procedure.
WH_JOURNALPLAYBACK 1 Installs a hook procedure that posts messages previously recorded by a WH_JOURNALRECORD hook procedure. For more information, see the JournalPlaybackProc hook procedure.
WH_JOURNALRECORD 0 Installs a hook procedure that records input messages posted to the system message queue. This hook is useful for recording macros. For more information, see the JournalRecordProc hook procedure.
WH_KEYBOARD 2 Installs a hook procedure that monitors keystroke messages. For more information, see the KeyboardProc hook procedure.
WH_KEYBOARD_LL 13 Installs a hook procedure that monitors low-level keyboard input events. For more information, see the LowLevelKeyboardProc hook procedure.
WH_MOUSE 7 Installs a hook procedure that monitors mouse messages. For more information, see the MouseProc hook procedure.
WH_MOUSE_LL 14 Installs a hook procedure that monitors low-level mouse input events. For more information, see the LowLevelMouseProc hook procedure.
WH_MSGFILTER -1 Installs a hook procedure that monitors messages generated as a result of an input event in a dialog box, message box, menu, or scroll bar. For more information, see the MessageProc hook procedure.
WH_SHELL 10 Installs a hook procedure that receives notifications useful to shell applications. For more information, see the ShellProc hook procedure.
WH_SYSMSGFILTER 6 Installs a hook procedure that monitors messages generated as a result of an input event in a dialog box, message box, menu, or scroll bar. The hook procedure monitors these messages for all applications in the same desktop as the calling thread. For more information, see the SysMsgProc hook procedure.

A pointer to the hook procedure. If the dwThreadId parameter is zero or specifies the identifier of a thread created by a different process, the lpfn parameter must point to a hook procedure in a DLL. Otherwise, lpfn can point to a hook procedure in the code associated with the current process.

A handle to the DLL containing the hook procedure pointed to by the lpfn parameter. The hMod parameter must be set to NULL if the dwThreadId parameter specifies a thread created by the current process and if the hook procedure is within the code associated with the current process.

The identifier of the thread with which the hook procedure is to be associated. For desktop apps, if this parameter is zero, the hook procedure is associated with all existing threads running in the same desktop as the calling thread. For Windows Store apps, see the Remarks section.

Return value

If the function succeeds, the return value is the handle to the hook procedure.

If the function fails, the return value is NULL. To get extended error information, call GetLastError.

Remarks

SetWindowsHookEx can be used to inject a DLL into another process. A 32-bit DLL cannot be injected into a 64-bit process, and a 64-bit DLL cannot be injected into a 32-bit process. If an application requires the use of hooks in other processes, it is required that a 32-bit application call SetWindowsHookEx to inject a 32-bit DLL into 32-bit processes, and a 64-bit application call SetWindowsHookEx to inject a 64-bit DLL into 64-bit processes. The 32-bit and 64-bit DLLs must have different names.

Because hooks run in the context of an application, they must match the «bitness» of the application. If a 32-bit application installs a global hook on 64-bit Windows, the 32-bit hook is injected into each 32-bit process (the usual security boundaries apply). In a 64-bit process, the threads are still marked as «hooked.» However, because a 32-bit application must run the hook code, the system executes the hook in the hooking app’s context; specifically, on the thread that called SetWindowsHookEx. This means that the hooking application must continue to pump messages or it might block the normal functioning of the 64-bit processes.

Читайте также:  Drivers ps3 controller windows

If a 64-bit application installs a global hook on 64-bit Windows, the 64-bit hook is injected into each 64-bit process, while all 32-bit processes use a callback to the hooking application.

To hook all applications on the desktop of a 64-bit Windows installation, install a 32-bit global hook and a 64-bit global hook, each from appropriate processes, and be sure to keep pumping messages in the hooking application to avoid blocking normal functioning. If you already have a 32-bit global hooking application and it doesn’t need to run in each application’s context, you may not need to create a 64-bit version.

An error may occur if the hMod parameter is NULL and the dwThreadId parameter is zero or specifies the identifier of a thread created by another process.

Calling the CallNextHookEx function to chain to the next hook procedure is optional, but it is highly recommended; otherwise, other applications that have installed hooks will not receive hook notifications and may behave incorrectly as a result. You should call CallNextHookEx unless you absolutely need to prevent the notification from being seen by other applications.

Before terminating, an application must call the UnhookWindowsHookEx function to free system resources associated with the hook.

The scope of a hook depends on the hook type. Some hooks can be set only with global scope; others can also be set for only a specific thread, as shown in the following table.

Hook Scope
WH_CALLWNDPROC Thread or global
WH_CALLWNDPROCRET Thread or global
WH_CBT Thread or global
WH_DEBUG Thread or global
WH_FOREGROUNDIDLE Thread or global
WH_GETMESSAGE Thread or global
WH_JOURNALPLAYBACK Global only
WH_JOURNALRECORD Global only
WH_KEYBOARD Thread or global
WH_KEYBOARD_LL Global only
WH_MOUSE Thread or global
WH_MOUSE_LL Global only
WH_MSGFILTER Thread or global
WH_SHELL Thread or global
WH_SYSMSGFILTER Global only

В

For a specified hook type, thread hooks are called first, then global hooks. Be aware that the WH_MOUSE, WH_KEYBOARD, WH_JOURNAL*, WH_SHELL, and low-level hooks can be called on the thread that installed the hook rather than the thread processing the hook. For these hooks, it is possible that both the 32-bit and 64-bit hooks will be called if a 32-bit hook is ahead of a 64-bit hook in the hook chain.

The global hooks are a shared resource, and installing one affects all applications in the same desktop as the calling thread. All global hook functions must be in libraries. Global hooks should be restricted to special-purpose applications or to use as a development aid during application debugging. Libraries that no longer need a hook should remove its hook procedure.

Windows Store app development If dwThreadId is zero, then window hook DLLs are not loaded in-process for the Windows Store app processes and the Windows Runtime broker process unless they are installed by either UIAccess processes (accessibility tools). The notification is delivered on the installer’s thread for these hooks:

  • WH_JOURNALPLAYBACK
  • WH_JOURNALRECORD
  • WH_KEYBOARD
  • WH_KEYBOARD_LL
  • WH_MOUSE
  • WH_MOUSE_LL

This behavior is similar to what happens when there is an architecture mismatch between the hook DLL and the target application process, for example, when the hook DLL is 32-bit and the application process 64-bit.

Examples

The winuser.h header defines SetWindowsHookEx as an alias which automatically selects the ANSI or Unicode version of this function based on the definition of the UNICODE preprocessor constant. Mixing usage of the encoding-neutral alias with code that not encoding-neutral can lead to mismatches that result in compilation or runtime errors. For more information, see Conventions for Function Prototypes.

Hooks Overview

A hook is a mechanism by which an application can intercept events, such as messages, mouse actions, and keystrokes. A function that intercepts a particular type of event is known as a hook procedure. A hook procedure can act on each event it receives, and then modify or discard the event.

The following some example uses for hooks:

  • Monitor messages for debugging purposes
  • Provide support for recording and playback of macros
  • Provide support for a help key (F1)
  • Simulate mouse and keyboard input
  • Implement a computer-based training (CBT) application

Hooks tend to slow down the system because they increase the amount of processing the system must perform for each message. You should install a hook only when necessary, and remove it as soon as possible.

This section discusses the following:

Hook Chains

The system supports many different types of hooks; each type provides access to a different aspect of its message-handling mechanism. For example, an application can use the WH_MOUSE hook to monitor the message traffic for mouse messages.

Читайте также:  Crysis для mac os

The system maintains a separate hook chain for each type of hook. A hook chain is a list of pointers to special, application-defined callback functions called hook procedures. When a message occurs that is associated with a particular type of hook, the system passes the message to each hook procedure referenced in the hook chain, one after the other. The action a hook procedure can take depends on the type of hook involved. The hook procedures for some types of hooks can only monitor messages; others can modify messages or stop their progress through the chain, preventing them from reaching the next hook procedure or the destination window.

Hook Procedures

To take advantage of a particular type of hook, the developer provides a hook procedure and uses the SetWindowsHookEx function to install it into the chain associated with the hook. A hook procedure must have the following syntax:

HookProc is a placeholder for an application-defined name.

The nCode parameter is a hook code that the hook procedure uses to determine the action to perform. The value of the hook code depends on the type of the hook; each type has its own characteristic set of hook codes. The values of the wParam and lParam parameters depend on the hook code, but they typically contain information about a message that was sent or posted.

The SetWindowsHookEx function always installs a hook procedure at the beginning of a hook chain. When an event occurs that is monitored by a particular type of hook, the system calls the procedure at the beginning of the hook chain associated with the hook. Each hook procedure in the chain determines whether to pass the event to the next procedure. A hook procedure passes an event to the next procedure by calling the CallNextHookEx function.

Note that the hook procedures for some types of hooks can only monitor messages. the system passes messages to each hook procedure, regardless of whether a particular procedure calls CallNextHookEx.

A global hook monitors messages for all threads in the same desktop as the calling thread. A thread-specific hook monitors messages for only an individual thread. A global hook procedure can be called in the context of any application in the same desktop as the calling thread, so the procedure must be in a separate DLL module. A thread-specific hook procedure is called only in the context of the associated thread. If an application installs a hook procedure for one of its own threads, the hook procedure can be in either the same module as the rest of the application’s code or in a DLL. If the application installs a hook procedure for a thread of a different application, the procedure must be in a DLL. For information, see Dynamic-Link Libraries.

You should use global hooks only for debugging purposes; otherwise, you should avoid them. Global hooks hurt system performance and cause conflicts with other applications that implement the same type of global hook.

Hook Types

Each type of hook enables an application to monitor a different aspect of the system’s message-handling mechanism. The following sections describe the available hooks.

WH_CALLWNDPROC and WH_CALLWNDPROCRET

The WH_CALLWNDPROC and WH_CALLWNDPROCRET hooks enable you to monitor messages sent to window procedures. The system calls a WH_CALLWNDPROC hook procedure before passing the message to the receiving window procedure, and calls the WH_CALLWNDPROCRET hook procedure after the window procedure has processed the message.

The WH_CALLWNDPROCRET hook passes a pointer to a CWPRETSTRUCT structure to the hook procedure. The structure contains the return value from the window procedure that processed the message, as well as the message parameters associated with the message. Subclassing the window does not work for messages set between processes.

For more information, see the CallWndProc and CallWndRetProc callback functions.

WH_CBT

The system calls a WH_CBT hook procedure before activating, creating, destroying, minimizing, maximizing, moving, or sizing a window; before completing a system command; before removing a mouse or keyboard event from the system message queue; before setting the input focus; or before synchronizing with the system message queue. The value the hook procedure returns determines whether the system allows or prevents one of these operations. The WH_CBT hook is intended primarily for computer-based training (CBT) applications.

For more information, see the CBTProc callback function.

For information, see WinEvents.

WH_DEBUG

The system calls a WH_DEBUG hook procedure before calling hook procedures associated with any other hook in the system. You can use this hook to determine whether to allow the system to call hook procedures associated with other types of hooks.

For more information, see the DebugProc callback function.

WH_FOREGROUNDIDLE

The WH_FOREGROUNDIDLE hook enables you to perform low priority tasks during times when its foreground thread is idle. The system calls a WH_FOREGROUNDIDLE hook procedure when the application’s foreground thread is about to become idle.

Читайте также:  Создание образа windows через ultraiso

For more information, see the ForegroundIdleProc callback function.

WH_GETMESSAGE

The WH_GETMESSAGE hook enables an application to monitor messages about to be returned by the GetMessage or PeekMessage function. You can use the WH_GETMESSAGE hook to monitor mouse and keyboard input and other messages posted to the message queue.

For more information, see the GetMsgProc callback function.

WH_JOURNALPLAYBACK

The WH_JOURNALPLAYBACK hook enables an application to insert messages into the system message queue. You can use this hook to play back a series of mouse and keyboard events recorded earlier by using WH_JOURNALRECORD. Regular mouse and keyboard input is disabled as long as a WH_JOURNALPLAYBACK hook is installed. A WH_JOURNALPLAYBACK hook is a global hook—it cannot be used as a thread-specific hook.

The WH_JOURNALPLAYBACK hook returns a time-out value. This value tells the system how many milliseconds to wait before processing the current message from the playback hook. This enables the hook to control the timing of the events it plays back.

For more information, see the JournalPlaybackProc callback function.

WH_JOURNALRECORD

The WH_JOURNALRECORD hook enables you to monitor and record input events. Typically, you use this hook to record a sequence of mouse and keyboard events to play back later by using WH_JOURNALPLAYBACK. The WH_JOURNALRECORD hook is a global hook—it cannot be used as a thread-specific hook.

For more information, see the JournalRecordProc callback function.

WH_KEYBOARD_LL

The WH_KEYBOARD_LL hook enables you to monitor keyboard input events about to be posted in a thread input queue.

For more information, see the LowLevelKeyboardProc callback function.

WH_KEYBOARD

The WH_KEYBOARD hook enables an application to monitor message traffic for WM_KEYDOWN and WM_KEYUP messages about to be returned by the GetMessage or PeekMessage function. You can use the WH_KEYBOARD hook to monitor keyboard input posted to a message queue.

For more information, see the KeyboardProc callback function.

WH_MOUSE_LL

The WH_MOUSE_LL hook enables you to monitor mouse input events about to be posted in a thread input queue.

For more information, see the LowLevelMouseProc callback function.

WH_MOUSE

The WH_MOUSE hook enables you to monitor mouse messages about to be returned by the GetMessage or PeekMessage function. You can use the WH_MOUSE hook to monitor mouse input posted to a message queue.

For more information, see the MouseProc callback function.

WH_MSGFILTER and WH_SYSMSGFILTER

The WH_MSGFILTER and WH_SYSMSGFILTER hooks enable you to monitor messages about to be processed by a menu, scroll bar, message box, or dialog box, and to detect when a different window is about to be activated as a result of the user’s pressing the ALT+TAB or ALT+ESC key combination. The WH_MSGFILTER hook can only monitor messages passed to a menu, scroll bar, message box, or dialog box created by the application that installed the hook procedure. The WH_SYSMSGFILTER hook monitors such messages for all applications.

The WH_MSGFILTER and WH_SYSMSGFILTER hooks enable you to perform message filtering during modal loops that is equivalent to the filtering done in the main message loop. For example, an application often examines a new message in the main loop between the time it retrieves the message from the queue and the time it dispatches the message, performing special processing as appropriate. However, during a modal loop, the system retrieves and dispatches messages without allowing an application the chance to filter the messages in its main message loop. If an application installs a WH_MSGFILTER or WH_SYSMSGFILTER hook procedure, the system calls the procedure during the modal loop.

An application can call the WH_MSGFILTER hook directly by calling the CallMsgFilter function. By using this function, the application can use the same code to filter messages during modal loops as it uses in the main message loop. To do so, encapsulate the filtering operations in a WH_MSGFILTER hook procedure and call CallMsgFilter between the calls to the GetMessage and DispatchMessage functions.

The last argument of CallMsgFilter is simply passed to the hook procedure; you can enter any value. The hook procedure, by defining a constant such as MSGF_MAINLOOP, can use this value to determine where the procedure was called from.

For more information, see the MessageProc and SysMsgProc callback functions.

WH_SHELL

A shell application can use the WH_SHELL hook to receive important notifications. The system calls a WH_SHELL hook procedure when the shell application is about to be activated and when a top-level window is created or destroyed.

Note that custom shell applications do not receive WH_SHELL messages. Therefore, any application that registers itself as the default shell must call the SystemParametersInfo function before it (or any other application) can receive WH_SHELL messages. This function must be called with SPI_SETMINIMIZEDMETRICS and a MINIMIZEDMETRICS structure. Set the iArrange member of this structure to ARW_HIDE.

For more information, see the ShellProc callback function.

Оцените статью