Huge pages windows server

Содержание
  1. Enabling large page support on Windows
  2. The benefit of using large pages
  3. How to enable large page support on Windows
  4. Editing your shortcut to run as Administrator
  5. Troubleshooting
  6. Huge Pages
  7. OS specific setup
  8. 1GB huge pages Linux only
  9. Поддержка больших страниц памяти и ее влияние на майнинг
  10. Зачем нужно включать поддержку huge pages в Ubuntu?
  11. Проверка ОС Ubuntu на предмет включения huge pages
  12. Включение поддержки адресации huge pages в Ubuntu
  13. Как подсчитать количество huge pages для выдления ядром системы Ubuntu?
  14. Включение параметра «Блокировка страниц в памяти» (Windows) Enable the Lock Pages in Memory Option (Windows)
  15. Включение параметра «Блокировка страниц в памяти» To enable the lock pages in memory option
  16. Преимущества и недостатки HugePages
  17. Часть 1: проверяем, что hugepages включены в Linux (оригинал здесь)
  18. Как изменить значение по умолчанию
  19. Часть 2: Преимущества и недостатки HugePages
  20. Виртуальная память
  21. Что такое страницы?
  22. Буфер ассоциативной трансляции (TLB)
  23. Hugepages приходят на помощь
  24. Подмена Hugepages
  25. Аллокация в памяти
  26. Выборочное применение hugepages

Enabling large page support on Windows

The benefit of using large pages

CPUs have a virtual memory space that is decoupled from the actual physical memory, in blocks called pages. Usually these are 4KB (4096 bytes) in size, and so there are a lot of pages used in rendering large images.

Because the IFS process leads to very incoherent memory access patterns, the CPU cache for page mappings (the TLB) can thrash pretty hard. By using large pages, which are typically 2MB in size, these cache misses are much less frequent, leading to substantially improved performance. 10-20% overall rendering speed improvement on an i7 CPU is common, and the speedup increases at higher resolution.

Here’s an example from a 4K (3840×2160) AA 2 animation frame, showing a 12% speedup:


With large pages.

How to enable large page support on Windows

Programs can be given permissions to lock pages in memory in the Local Security Policy settings; Windows Home or starter versions don’t include an interface for this, however there are guides for this as well.

This section assumes you’re using Windows Professional, Enterprise, Ultimate or Server:

  1. From the Start menu, open Local Security Policy (under Administrative Tools).
  2. Under Local Policies\User Rights Assignment, double click the Lock Pages in Memory setting.
  3. Click Add User or Group and type your Windows user name.
  4. Either log off and then log back in or restart your computer — unfortunately it won’t work without this step.

Editing your shortcut to run as Administrator

Programs furthermore need to be run with Admin privileges in order to use large page allocations. To avoid having to right-click and select Run as Administrator every time, you can edit your shortcut to do this automatically, in the «Compatibility» section:

Troubleshooting

You can verify that large page support is enabled by opening the About dialog, which will say «Large page support enabled» if it could successfully get the permissions for large page allocations.

Huge Pages

Huge Pages, also known as Large Pages (on Windows) and Super Pages (on BSD or macOS) is very important thing for almost all supported CPU mineable algorithms, typical hashrate increase is 20-30% when huge pages used, for RandomX it can increase performance up to 50%. XMRig use term huge pages on all platforms, please don’t confusing.

If XMRig use huge pages you will see lines with text like bellow in miner log.

OS specific setup

On Windows you need special privilege called as SeLockMemoryPrivilege to use huge pages.
First check miner output if you see line below you already have this privilege and no additional actions required.

If not, you have 2 options to obtain it, both are require admin rights.

  • Easiest way: run the miner as Administrator once and reboot.
  • Manual configuration

On Windows 10 once you obtain the privilege, admin rights no longer required to use huge pages, but on Windows 7 admin rights always required. Please note on Windows no way to reserve huge pages for future use and the miner still can fail to allocate all required huge pages, because other applications use memory, if you got less than 100% of huge pages best option is reboot. If you heavy use algorithm switching and like to prevent loose huge pages you can use option «memory-pool»: true, in «cpu» object.

For manual configuration you must know how many huge pages you need, general recommendations is 1280 pages per NUMA node for RandomX algorithms and 128 per system for other algorithms. Please note 1280 pages means 2560 MB of memory will be reserved for huge pages and become not available for other usage, in automatic mode the miner reserve precise count of huge pages.

Temporary (until next reboot) reserve huge pages:

Permanent huge pages reservation

1GB huge pages Linux only

For RandomX dataset since version 5.2.0 the miner support 1GB huge pages (regular huge pages size is 2MB), this feature available only on Linux. It increases the hashrate by 1-3% (depends of CPU) and increases memory requirements to 3GB (3 pages) per NUMA node.
By default this feature disabled, to enable use option «1gb-pages»: true, in «randomx» object.

Читайте также:  App creating mac os

Поддержка больших страниц памяти и ее влияние на майнинг

При майнинге криптовалюты Monero и ряда других монет на процессорах можно добиться серьезного увеличения хешрейта при включении поддержки адресации больших страниц памяти (huge pages в Linux или large pages в Windows).

Опция закрепления страниц в памяти отдает приоритет хранению данных приложения в быстродействующей оперативной физической памяти. Благодаря этому сокращается количество операций постраничного разбиения данных и количество операций запись/чтение в виртуальной памяти (более медленной) на диске (в файл подкачки).

На алгоритме RandomX при майнинге Monero (XMR) закрепление страниц в памяти (huge/large pages) дает увеличение хешрейта порядка 30%, а в некоторых случаях и больше (50-60%).

Скриншот майнера xmrig с работающей адресацией huge pages в OS Windows:

Нужно понимать, что назначение всей свободной физической памяти одному или нескольким процессам может отобрать большую часть доступного ОЗУ в ущерб другим процессам.

В случае одновременного использования рига для майнинга на CPU и GPU это может спровоцировать замедление майнинга на видеокартах, отказы/зависания.

Для предотвращения проблем нужно верно расходовать ресурсы: не злоупотреблять большим количеством потоков майнинга на CPU (использовать один поток на каждые 2 Мб кеша L2), оставлять ресурсы для работы ОС и майнеров на GPU, периодически отслеживать производительность компьютера (например, в диспетчере задач).

.

В операционной системе Windows включение закрепления страниц в памяти делается довольно просто с помощью политики безопасности «Блокировка страниц в памяти».

В ОС типа Ubuntu для включения этой полезной опции нужно проделать ряд дополнительных телодвижений.

Зачем нужно включать поддержку huge pages в Ubuntu?

ОС Ubuntu заточена на экономное расходование ресурсов, а «пожирание» памяти майнером не является таковым. Поэтому для выделения майнеру ресурсов нужно «немного поработать напильником». Но это стоит затраченных усилий и времени.

Например, на древнем (2008 год) процессоре Xeon X3330 (2,6 ГГц), не умеющем вычислять по инструкциям AES, при майнинге Монеро на Random X хешрейт без huge pages равен 200-210 h/s (на двух потоках). При их включении скорость вычислений возрастает до порядка 270 h/s (выигрыш на 25-30%).

На более современных процессорах разница может быть еще более существенной.

Скриншот майнера xmrig, работающего без включения huge pages:

Рассмотрим подробнее, как проверить включена ли поддержка huge pages в Linux-подобных системах и как их задействовать для майнинга (на примере XUBUNTU 16.04).

Проверка ОС Ubuntu на предмет включения huge pages

Прежде всего, нужно проверить, имеется ли поддержка hugepages на уровне железа. Это делается с помощью команды:

В строке ответа системы в значении, заключенном в квадратные скобки, отображается наличие поддержки hugepages. Если высвечивается значение madvise, то в данной системе имеется поддержка huge pages . Если отображается значение [never], то данная система не имеет поддержки hugepages и стоит задуматься об апгрейде…

При наличии поддержки huge pages на аппаратном уровне нужно проверить, задействованы ли они и сколько страниц памяти зарезервировано. Для этого в терминале Ubuntu вводят команду:

Эта команда показывает число страниц памяти, которые ядро системы (kernel) выделяет (резервирует) на нужды пользователя.

Скриншот терминала, отображающего информацию о включении и числе выделенных hugepages:

Для включения, а также изменения количества выделенной физической памяти на постоянной основе используется изменение параметров ядра Ubuntu через файл конфигурации sysctl.conf.

Включение поддержки адресации huge pages в Ubuntu

В версии xmrig 5.2.0 и выше есть возможность включения поддержки huge pages на лету, но это требует рут-привилегий для программы-майнера.

Эту же операции для текущей сессии (до перезагрузки системы) можно сделать (с привилегиями root) командой:

Более разумно обеспечить работоспособность больших страниц памяти на этапе загрузки ядра с помощью конфигурационного файла sysctl.conf.

Это делается командой:

где 1280 – это число зарезервированных страниц памяти.

Можно сделать аналогичную операцию с помощью утилиты nano и команды:

В появившемся окне терминала нужно пролистать sysctl.conf до конца и вписать в него:

Затем нужно сохранить изменения (клавиши ctrl+O), нажать Enter, Ctrl+x и перезагрузить компьютер (sudo reboot).

Как подсчитать количество huge pages для выдления ядром системы Ubuntu?

Если зарезервировать слишком мало страниц, то майнер не будет работать в полную силу. Например, при резервировании 128 страниц xmrig показывает, что имеется всего 11% от необходимых 1168 страниц:

Исходя из информации в майнере, для его работы нужно 1168 страниц больших страниц памяти:

Майнер xmrig на RandomX с 1168 страницами памяти показывает вроде бы достаточное количество страниц, но все равно не использует их:

По рекомендациям разработчиков xmrig, для майнинга на алгоритмах типа RandomX нужно 1280 страниц на одну ноду NUMA и 128 страниц – для других алгоритмов.

Это совпадает с практикой, что видно на скрине майнера компьютера с выделенными 1280 hugepages:

Использование 1280 зарезервированных страниц означает, что в системе станет меньше на не менее 1280х2=2560 Мб доступной памяти (при стандартном размере страницы памяти в 2MB ).

Поэтому при ограниченном ОЗУ использование huge pages может привести к обратному эффекту – снижению хешрейта из-за нехватки физической памяти для нужд системы.

Включение параметра «Блокировка страниц в памяти» (Windows) Enable the Lock Pages in Memory Option (Windows)

Применимо к: Applies to: SQL Server SQL Server (все поддерживаемые версии) SQL Server SQL Server (all supported versions) Применимо к: Applies to: SQL Server SQL Server (все поддерживаемые версии) SQL Server SQL Server (all supported versions)

Эта политика Windows определяет, какие учетные записи могут использовать процесс для сохранения данных в физической памяти, чтобы система не отправляла страницы данных в виртуальную память на диске. This Windows policy determines which accounts can use a process to keep data in physical memory, preventing the system from paging the data to virtual memory on disk.

Читайте также:  Как удалить приложение kali linux

Блокировка страниц в памяти может повысить производительность, если требуется подкачка памяти на диск. Locking pages in memory may boost performance when paging memory to disk is expected.

Для включения этой политики для учетной записи, используемой SQL Server SQL Server , воспользуйтесь средством «Групповая политика Windows» (gpedit.msc). Use the Windows Group Policy tool (gpedit.msc) to enable this policy for the account used by SQL Server SQL Server . Чтобы изменить эту политику, необходимо быть системным администратором. You must be a system administrator to change this policy.

Включение параметра «Блокировка страниц в памяти» To enable the lock pages in memory option

В меню Пуск выберите команду Выполнить. On the Start menu, click Run. В окне Открыть введите gpedit.msc. In the Open box, type gpedit.msc.

В консоли Редактор локальных групповых политик разверните узел Конфигурация компьютера, затем узел Конфигурация Windows. On the Local Group Policy Editor console, expand Computer Configuration, and then expand Windows Settings.

Разверните узлы Настройки безопасностии Локальные политики. Expand Security Settings, and then expand Local Policies.

Выберите папку Назначение прав пользователя . Select the User Rights Assignment folder.

Политики будут показаны на панели подробностей. The policies will be displayed in the details pane.

На этой панели дважды щелкните параметр Блокировка страниц в памяти. In the pane, double-click Lock pages in memory.

В диалоговом окне Параметр локальной безопасности — блокировка страниц в памяти щелкните Добавить пользователя или группу. In the Local Security Setting — Lock pages in memory dialog box, click Add User or Group.

В диалоговом окне Выбор пользователей, учетных записей служб или групп выберите учетную запись службы SQL Server. In the Select Users, Service Accounts, or Groups dialog box, select the SQL Server Service account.

Чтобы этот параметр вступил в силу, перезапустите службу SQL Server. Restart the SQL Server Service for this setting to take effect.

Преимущества и недостатки HugePages

Перевод статьи подготовлен для студентов курса «Администратор Linux».

Ранее я рассказал о том, как проверить и включить использование Hugepages в Linux.
Эта статья будет полезна, только если у вас действительно есть, где использовать Hugepages. Я встречал множество людей, которые обманываются перспективой того, что Hugepages волшебным образом повысят производительность. Тем не менее hugepaging является сложной темой, и при неправильном использовании он способен понизить производительность.

Часть 1: проверяем, что hugepages включены в Linux (оригинал здесь)

Проблема:
Необходимо проверить, включены ли HugePages в вашей системе.

Решение:
Оно довольно простое:

Вы получите что-то вроде этого:

Вы увидите список доступных опций (always, madvise, never), при этом текущая активная опция будет заключена в скобки (по умолчанию madvise).

madvise означает, что transparent hugepages включены только для областей памяти, которые явно запрашивают hugepages с помощью madvise(2).

always означает, что transparent hugepages включены всегда и для всех процессов. Обычно это повышает производительность, но если у вас есть вариант использования, где множество процессов потребляет небольшое количество памяти, то общая нагрузка на память может резко возрасти.

never означает, что transparent hugepages не будут включаться даже при запросе с помощью madvise. Чтобы узнать больше, обратитесь к документации ядра Linux.

Как изменить значение по умолчанию

Вариант 1: Напрямую изменить sysfs (после перезагрузки параметр вернется к значению по умолчанию):

Вариант 2: Измените системное значение по умолчанию, перекомпилировав ядро с измененной конфигурацией (этот вариант рекомендуется только если вы используете собственное ядро):

  • Чтобы поставить always по умолчанию, используйте:
  • Чтобы поставить madvise по умолчанию, используйте:

Часть 2: Преимущества и недостатки HugePages

Мы попытаемся выборочно объяснить преимущества, недостатки и возможные ошибки при использовании Hugepages. Поскольку технологически сложная и педантичная статья, вероятно, будет тяжелой для понимания людям, которые обманываются считая Hugepages панацеей, я пожертвую точностью в угоду простоты. Просто стоит иметь ввиду, что множество тем действительно сложны и поэтому сильно упрощены.

Обратите внимание, что мы говорим о 64-х разрядных x86 системах, работающих на Linux, и что я просто предполагаю, что система поддерживает transparent hugepages (так как не является недостатком то, что hugepages не подменяются), как это случается практически в любой современной среде Linux.

В ссылках ниже я прикреплю больше технического описания.

Виртуальная память

Если вы программист C++, вы знаете, что у объектов в памяти есть конкретные адреса (значения указателя).

Однако эти адреса необязательно отражают физические адреса в памяти (адреса в ОЗУ). Они представляют собой адреса в виртуальной памяти. Процессор имеет специальный модуль MMU (memory management unit), который помогает ядру сопоставлять виртуальную память с физическим местоположением.

Такой подход имеет множество преимуществ, но самые основные из них:

  • Производительность (по различным причинам);
  • Изоляция программ, то есть ни одна из программ не может читать из памяти другой программы.

Что такое страницы?

Виртуальная память поделена на страницы. Каждая отдельная страница указывает на определенную физическую память, она может указывать на область в оперативной памяти, а может на адрес, назначенный физическому устройству, например видеокарте.

Большинство страниц, с которыми вы имеете дело, указывают либо на ОЗУ, либо подменяются (swap), то есть хранятся на жестком диске или SSD. Ядро управляет физическим расположением каждой страницы. Если осуществляется доступ к подмененной странице, ядро останавливает поток, который пытается получить доступ к памяти, считывает страницу с жесткого диска/SSD в оперативную память, а затем продолжает выполнение потока.

Читайте также:  Как убрать кэширование оперативной памяти windows

Этот процесс прозрачен для потока, то есть он не обязательно читает напрямую с жесткого диска/SSD. Размер нормальных страниц – 4096 байт. Размер Hugepages – 2 мегабайта.

Буфер ассоциативной трансляции (TLB)

Когда программа обращается к некоторой странице памяти, центральный процессор должен знать, с какой физической страницы считывать данные (то есть иметь виртуальную карту адресов).

В ядре есть структура данных (таблица страниц), которая содержит всю информацию об используемых страницах. С помощью этой структуры данных можно сопоставить виртуальный адрес с физическим адресом.

Однако таблица страниц довольно сложна и работает медленно, поэтому мы просто не можем каждый раз анализировать всю структуру данных, когда какой-либо процесс обращается к памяти.

К счастью в нашем процессоре есть TLB, который кэширует сопоставление виртуальных и физических адресов. Это значит, что несмотря на то, что нам нужно проанализировать таблицу страниц при первой попытке получить доступ, все последующие обращения к странице могут обрабатываться в TLB, что обеспечивает быструю работу.

Поскольку он реализован в качестве физического устройства (что делает его в первую очередь быстрым), его емкость ограничена. Поэтому, если вы захотите получить доступ к большему количеству страниц, TLB не сможет хранить сопоставление для всех них, вследствие чего ваша программа будет работать намного медленнее.

Hugepages приходят на помощь

Итак, что мы можем сделать, чтобы избежать переполнения TLB? (Мы предполагаем, что программе все еще нужен тот же объем памяти).

Вот тут-то и появляются Hugepages. Вместо 4096 байт, требующих всего одну запись в TLB, одна запись в TLB теперь может указывать на колоссальные 2 мегабайта. Будем предполагать, что TLB имеет 512 записей, здесь без Hugepages мы можем сопоставить:

Тогда как с ними мы можем сопоставить:

Именно поэтому Hugepages – это круто. Они могут повысить производительность без значительного приложения усилий. Но здесь есть существенные оговорки.

Подмена Hugepages

Ядро автоматически отслеживает частоту использования каждой страницы памяти. Если физической памяти (ОЗУ) недостаточно, ядро переместит менее важные (реже используемые) страницы на жесткий диск, чтобы освободить часть ОЗУ для более важных страниц.
В принципе, то же самое касается и Hugepages. Однако ядро может менять местами только целые страницы, а не отдельные байты.

Предположим, у нас есть такая программа:

В этом случае ядру нужно будет подменить (прочитать) целых 2 мегабайта информации с жесткого диска/SSD только для того чтобы вы прочитали один байт. Что касается обычных страниц, с жесткого диска/SSD надо прочитать всего 4096 байт.

Поэтому, если hugepage подменяется, ее чтение происходит быстрее, только если вам нужно получить доступ ко всей странице. Это значит, что если вы пытаетесь получить доступ случайным образом к различным частям памяти и просто считываете пару килобайт, вам следует использовать обычные страницы и больше ни о чем не беспокоиться.

С другой стороны, если вам нужно получать доступ к большой части памяти последовательно, hugepages увеличат вашу производительность. Тем не менее, вам нужно проверить это самостоятельно (а не на примере абстрактного ПО) и посмотреть, что будет работать быстрее.

Аллокация в памяти

Если вы пишете на С, вы знаете, что вы можете запросить сколь угодно малые (или почти сколь угодно большие) объемы памяти из кучи с помощью malloc() . Допустим, вам нужно 30 байт памяти:

Программисту может показаться, что вы “запрашиваете” 30 байт памяти из операционной системы и возвращаете указатель на некоторую виртуальную память. Но на самом деле malloc () — это просто функция C, которая вызывает изнутри функции brk и sbrk для запроса или освобождения памяти из операционной системы.

Однако, запрашивать больше и больше памяти для каждой аллокации неэффективно; наиболее вероятно, что какой-либо сегмент памяти уже был освобожден (free()) , и мы можем повторно его использовать. malloc() реализует довольно сложные алгоритмы для повторного использования освобожденной памяти.

При этом для вас все происходит незаметно, так почему это должно вас волновать? А потому, что вызов free() не означает, что память обязательно возвращается сразу же операционной системе.

Существует такое понятие, как фрагментация памяти. В крайних случаях есть сегменты кучи, где используется только несколько байтов, в то время, как все, что находится между ними было освобождено (free()) .

Обратите внимание, что фрагментация памяти является невероятно сложной темой, и даже незначительные изменения в программе могут значительно повлиять на нее. В большинстве случаев программы не вызывают значительной фрагментации памяти, но вы должны иметь ввиду, что если с фрагментацией в некоторой области кучи возникла проблема, hugepages могут только усугубить ситуацию.

Выборочное применение hugepages

После прочтения статьи, вы определили, какие части вашей программы могут извлечь выгоду из применения hugepages, а какие – нет. Так следует ли вообще включать hugepages?

К счастью, вы можете использовать madvise() , чтобы включить hugepaging только для тех областей памяти, где это будет полезно.

Для начала, проверьте, что hugepages работают в режиме madvise(), с помощью инструкции в начале статьи.

Затем, используйте madvise() , чтобы указать ядру, где именно использовать hugepages.

Обратите внимание, что этот метод — просто рекомендации ядру по управлению памятью. Это не означает, что ядро будет автоматически использовать hugepages для заданной памяти.

Обратитесь к документации (manpage) madvise, чтобы узнать больше об управлении памятью и madvise() , у этой темы невероятно крутая кривая обучения. Поэтому, если вы намереваетесь действительно хорошо разобраться в ней, подготовьтесь к чтению и тестированию в течение нескольких недель, прежде чем рассчитывать на хоть какой-то положительный результат.

Что почитать?

Есть вопрос? Напишите в комментариях!

Оцените статью