Installing matplotlib in windows

Installing¶

If you wish to contribute to the project, it’s recommended you install the latest development version .

Installing an official release¶

Matplotlib and its dependencies are available as wheel packages for macOS, Windows and Linux distributions:

The following backends work out of the box: Agg, ps, pdf, svg and TkAgg.

For support of other GUI frameworks, LaTeX rendering, saving animations and a larger selection of file formats, you may need to install additional dependencies .

Although not required, we suggest also installing IPython for interactive use. To easily install a complete Scientific Python stack, see Scientific Python Distributions below.

Test data¶

The wheels ( *.whl ) on the PyPI download page do not contain test data or example code.

If you want to try the many demos that come in the Matplotlib source distribution, download the *.tar.gz file and look in the examples subdirectory.

To run the test suite:

  • extract the lib/matplotlib/tests or lib/mpl_toolkits/tests directories from the source distribution;
  • install test dependencies: pytest, Pillow, MiKTeX, GhostScript, ffmpeg, avconv, ImageMagick, and Inkscape;
  • run python -mpytest .

Third-party distributions of Matplotlib¶

Scientific Python Distributions¶

Anaconda and Canopy and ActiveState are excellent choices that «just work» out of the box for Windows, macOS and common Linux platforms. WinPython is an option for Windows users. All of these distributions include Matplotlib and lots of other useful (data) science tools.

Linux: using your package manager¶

If you are on Linux, you might prefer to use your package manager. Matplotlib is packaged for almost every major Linux distribution.

  • Debian / Ubuntu: sudo apt-get install python3-matplotlib
  • Fedora: sudo dnf install python3-matplotlib
  • Red Hat: sudo yum install python3-matplotlib
  • Arch: sudo pacman -S python-matplotlib

Installing from source¶

If you are interested in contributing to Matplotlib development, running the latest source code, or just like to build everything yourself, it is not difficult to build Matplotlib from source. Grab the latest tar.gz release file from the PyPI files page, or if you want to develop Matplotlib or just need the latest bugfixed version, grab the latest git version, and see Install from source .

The standard environment variables CC , CXX , PKG_CONFIG are respected. This means you can set them if your toolchain is prefixed. This may be used for cross compiling.

Once you have satisfied the requirements detailed below (mainly Python, NumPy, libpng and FreeType), you can build Matplotlib.

We provide a setup.cfg file which you can use to customize the build process. For example, which default backend to use, whether some of the optional libraries that Matplotlib ships with are installed, and so on. This file will be particularly useful to those packaging Matplotlib.

If you have installed prerequisites to nonstandard places and need to inform Matplotlib where they are, edit setupext.py and add the base dirs to the basedir dictionary entry for your sys.platform ; e.g., if the header of some required library is in /some/path/include/someheader.h , put /some/path in the basedir list for your platform.

Читайте также:  Видеокарта не работает при установке windows

Dependencies¶

Matplotlib requires the following dependencies:

Optionally, you can also install a number of packages to enable better user interface toolkits. See What is a backend? for more details on the optional Matplotlib backends and the capabilities they provide.

  • tk (>= 8.3, != 8.6.0 or 8.6.1): for the Tk-based backends;
  • PyQt4 (>= 4.6) or PySide (>= 1.0.3): for the Qt4-based backends;
  • PyQt5: for the Qt5-based backends;
  • PyGObject: for the GTK3-based backends;
  • wxpython (>= 4): for the WX-based backends;
  • cairocffi (>= 0.8) or pycairo: for the cairo-based backends;
  • Tornado: for the WebAgg backend;

For better support of animation output format and image file formats, LaTeX, etc., you can install the following:

  • ffmpeg/avconv: for saving movies;
  • ImageMagick: for saving animated gifs;
  • Pillow (>= 3.4): for a larger selection of image file formats: JPEG, BMP, and TIFF image files;
  • LaTeX and GhostScript (>=9.0) : for rendering text with LaTeX.

Matplotlib depends on non-Python libraries.

On Linux and OSX, pkg-config can be used to find required non-Python libraries and thus make the install go more smoothly if the libraries and headers are not in the expected locations.

If not using pkg-config (in particular on Windows), you may need to set the include path (to the FreeType, libpng, and zlib headers) and link path (to the FreeType, libpng, and zlib libraries) explicitly, if they are not in standard locations. This can be done using standard environment variables — on Linux and OSX:

where . means «also give, in the same format, the directories containing png.h and zlib.h for the include path, and for libpng.so / png.lib and libz.so / z.lib for the link path.»

The following libraries are shipped with Matplotlib:

  • Agg : the Anti-Grain Geometry C++ rendering engine;
  • qhull : to compute Delaunay triangulation;
  • ttconv : a TrueType font utility.

Building on Linux¶

It is easiest to use your system package manager to install the dependencies.

If you are on Debian/Ubuntu, you can get all the dependencies required to build Matplotlib with:

If you are on Fedora, you can get all the dependencies required to build Matplotlib with:

If you are on RedHat, you can get all the dependencies required to build Matplotlib by first installing yum-builddep and then running:

These commands do not build Matplotlib, but instead get and install the build dependencies, which will make building from source easier.

Building on macOS¶

The build situation on macOS is complicated by the various places one can get the libpng and FreeType requirements (MacPorts, Fink, /usr/X11R6), the different architectures (e.g., x86, ppc, universal), and the different macOS versions (e.g., 10.4 and 10.5). We recommend that you build the way we do for the macOS release: get the source from the tarball or the git repository and install the required dependencies through a third-party package manager. Two widely used package managers are Homebrew, and MacPorts. The following example illustrates how to install libpng and FreeType using brew :

If you are using MacPorts, execute the following instead:

After installing the above requirements, install Matplotlib from source by executing:

Note that your environment is somewhat important. Some conda users have found that, to run the tests, their PYTHONPATH must include /path/to/anaconda/. /site-packages and their DYLD_FALLBACK_LIBRARY_PATH must include /path/to/anaconda/lib.

Building on Windows¶

The Python shipped from https://www.python.org is compiled with Visual Studio 2015 for 3.5+. Python extensions should be compiled with the same compiler, see e.g. https://packaging.python.org/guides/packaging-binary-extensions/#setting-up-a-build-environment-on-windows for how to set up a build environment.

Читайте также:  Uefi не видит линукс

Since there is no canonical Windows package manager, the methods for building FreeType, zlib, and libpng from source code are documented as a build script at matplotlib-winbuild.

There are a few possibilities to build Matplotlib on Windows:

  • Wheels via matplotlib-winbuild
  • Wheels by using conda packages (see below)
  • Conda packages (see below)

Wheel builds using conda packages¶

This is a wheel build, but we use conda packages to get all the requirements. The binary requirements (png, FreeType. ) are statically linked and therefore not needed during the wheel install.

Set up the conda environment. Note, if you want a qt backend, add pyqt to the list of conda packages.

Matplotlib. Урок 1. Быстрый старт

Первый урок из цикла, посвященному библиотеке для визуализации данных Matplotlib. В рамках данного урока будут рассмотрены такие вопросы как: установка библиотеки, построение линейного графика, несколько графиков на одном и на разных полях, построение диаграммы для категориальных данных и обзор основных элементов графика.

Установка

Варианты установки Matplotlib

Существует два основных варианта установки этой библиотеки: в первом случае вы устанавливаете пакет Anaconda , в состав которого входит большое количество различных инструментов для работы в области машинного обучения и анализа данных (и не только); во втором – установить Matplotlib самостоятельно, используя менеджер пакетов. Про установку Anaconda вы можете прочитать в статье Python. Урок 1. Установка .

Установка Matplotlib через менеджер pip

Второй вариант – это воспользоваться менеджером pip и установить Matplotlib самостоятельно, для этого введите в командной строке вашей операционной системы следующие команды:

Первая из них обновит ваш pip , вторая установит matplotlib со всеми необходимыми зависимостями.

Проверка установки

Для проверки того, что все у вас установилось правильно, запустите интерпретатор Python и введите в нем следующее:

После этого можете проверить версию библиотеки (она скорее всего будет отличаться от приведенной ниже):

Быстрый старт

Перед тем как углубиться в дебри библиотеки Matplotlib , для того, чтобы появилось интуитивное понимание принципов работы с этим инструментом, рассмотрим несколько примеров, изучив которые вы уже сможете использовать библиотеку для решения своих задач.

Если вы работаете в Jupyter Notebook для того, чтобы получать графики рядом с ячейками с кодом необходимо выполнить специальную magic команду после того, как импортируете matplotlib ::

Результат работы выглядеть будет так, как показано на рисунке ниже.

Если вы пишете код в .py файле, а потом запускаете его через вызов интерпретатора Python , то строка %matplotlib inline вам не нужна, используйте только импорт библиотеки.

Пример, аналогичный тому, что представлен на рисунке выше, для отдельного Python файла будет выглядеть так:

В результате получите график в отдельном окне.

Далее мы не будем останавливаться на особенностях использования magic команды, просто запомните, если вы используете Jupyter notebook при работе с Matplotlib вам обязательно нужно включить %matplotlib inline.

Теперь перейдем непосредственно к Matplotlib . Задача урока “Быстрый старт” – это построить разные типы графиков, настроить их внешний вид и освоиться в работе с этим инструментом.

Построение графика

Для начал построим простую линейную зависимость, дадим нашему графику название, подпишем оси и отобразим сетку. Код программы:

В результате получим следующий график:

Изменим тип линии и ее цвет, для этого в функцию plot() , в качестве третьего параметра передадим строку, сформированную определенным образом, в нашем случае это “r–”, где “r” означает красный цвет, а “–” – тип линии – пунктирная линия. Более подробно о том, как задавать цвет и какие типы линии можно использовать будет рассказано с одной из следующих глав.

Несколько графиков на одном поле

Построим несколько графиков на одном поле, для этого добавим квадратичную зависимость:

Читайте также:  Фоновые рисунки экрана входа windows

В приведенном примере в функцию plot() последовательно передаются два массива для построения первого графика и два массива для построения второго, при этом, как вы можете заметить, для обоих графиков массив значений независимой переменной x один и то же.

Несколько разделенных полей с графиками

Третья, довольно часто встречающаяся задача – это отобразить два или более различных поля, на которых будет отображено по одному или более графику.

Построим уже известные нам две зависимость на разных полях.

Здесь мы воспользовались новыми функциями:

figure() – функция для задания глобальных параметров отображения графиков. В нее, в качестве аргумента, мы передаем кортеж, определяющий размер общего поля.

subplot() – функция для задания местоположения поля с графиком. Существует несколько способов задания областей для вывода через функцию subplot() мы воспользовались следующим: первый аргумент – количество строк, второй – столбцов в формируемом поле, третий – индекс (номер поля, считаем сверху вниз, слева направо).

Остальные функции уже вам знакомы, дополнительно мы использовали параметр fontsize для функций xlabel() и ylabel() , для задания размера шрифта.

Построение диаграммы для категориальных данных

До этого мы строили графики по численным данным, т.е. зависимая и независимая переменные имели числовой тип. На практике довольно часто приходится работать с данными нечисловой природы – имена людей, название фруктов, и т.п.

Построим диаграмму на которой будет отображаться количество фруктов в магазине:

Для вывода диаграммы мы использовали функцию bar() .

К этому моменту, если вы самостоятельно попробовали запустить приведенные выше примеры, у вас уже должно сформировать некоторое понимание того, как осуществляется работа с этой библиотекой.

Основные элементы графика

Рассмотрим основные термины и понятия, касающиеся изображения графика, с которыми вам необходимо будет познакомиться, для того, чтобы в дальнейшем у вас не было трудностей при прочтении материалов из этого цикла статей и документации по библиотеке matplotlib .

Корневым элементом при построения графиков в системе Matplotlib является Фигура ( Figure ). Все, что нарисовано на рисунке выше является элементами фигуры. Рассмотрим ее составляющие более подробно.

На рисунке представлены два графика – линейный и точечный. Matplotlib предоставляет огромное количество различных настроек, которые можно использовать для того, чтобы придать графику вид, который вам нужен: цвет, толщина и тип линии, стиль линии и многое другое, все это мы рассмотрим в ближайших статьях.

Вторым, после непосредственно самого графика, по важности элементом фигуры являются оси. Для каждой оси можно задать метку (подпись), основные ( major ) и дополнительные ( minor ) тики, их подписи, размер и толщину, также можно задать диапазоны по каждой из осей.

Сетка и легенда

Следующими элементами фигуры, которые значительно повышают информативность графика являются сетка и легенда. Сетка также может быть основной ( major ) и дополнительной ( minor ). Каждому типу сетки можно задавать цвет, толщину линии и тип. Для отображения сетки и легенды используются соответствующие команды.

Ниже представлен код, с помощью которого была построена фигура, изображенная на рисунке:

Если в данный момент вам многое кажется непонятным – не переживайте, далее мы разберем подробно особенности настройки и использования всех элементов представленных на поле с графиками.

P.S.

Вводные уроки по “Линейной алгебре на Python” вы можете найти соответствующей странице нашего сайта . Все уроки по этой теме собраны в книге “Линейная алгебра на Python”.

Если вам интересна тема анализа данных, то мы рекомендуем ознакомиться с библиотекой Pandas. Для начала вы можете познакомиться с вводными уроками. Все уроки по библиотеке Pandas собраны в книге “Pandas. Работа с данными”.

Matplotlib. Урок 1. Быстрый старт : 2 комментария

В разделе “Построение графика” забыли в код добавить
import numpy as np

Оцените статью