Ipython notebook установка под windows

Анализ данных (Программная инженерия)/Установка и настройка Python

Содержание

Windows

Установка готового пакета

Можно отдельно установить Python и все необходимые библиотеки и надстройки, однако это слишком долго. Поэтому воспользуемся уже собранным пакетом Python(X,Y).

  1. Загрузим Python(X,Y): страница загрузки, из раздела Current release.
  2. Установим его, причем обязательно не забыв поставить галочку для установки всех плагинов в Python(X,Y).
  3. Все готово.

По непонятным причинам в некоторых случаях установка происходит довольно криво. Попробуйте выполнить следующие команды в своем Python:

Юнит-тесты могут сразу показать, все ли хорошо. Аналогично их стоит запустить для библиотек pandas, pylab, sklearn. Если вдруг вываливается ошибка, то можно попробовать установить Python и библиотеки другим способом.

Установку вручную

Минимальный набор для работы:

  • Python 2.7
  • IPython Notebook
  • NumPy
  • Matplotlib
  • Pandas
  • SciKit-Learn

Лучше ставить 32-битные версии, поскольку 64-битные не всегда работают корректно под Windows. Обратите внимание, что некоторые библиотеки будут иметь дополнительные зависимости в виде других библиотек, их тоже придется поставить.

Запуск IPython Notebook

Попробуем запустить IPython Notebook. Для этого запустим командную строку (нажать win+R и ввести cmd), и введем ipython notebook —pylab inline. Должен открыться браузер с запущенным из текущей директории IPython Notebook. Все ноутбуки будут сохраняться в текущую директорию, из которой был вызван IPython Notebook.

Mac OS X и Linux

Mac OS

Установка Python через brew

официального сайта Если у вас нет питона, то придется поставить brew с вытекающей от туда установкой Xcode. Следуйте указаниям с сайта Homebrew и у вас все получится. Устанавливаем свежую версию Python и virtualenv:

Устанавливаем фортран (нужен для сборки NumPy и SciPy):

Создаем виртуальное окружение:

Устанавливаем необходимые пакеты питона:

Ручная установка Python

Можно попробовать поставить все вручную, список необходимых библиотек см. в разделе для Windows.

Сторонний туториал

Linux

Для сохранения здоровья, используйте Ubuntu 12.04 LTS или выше. Устанавливаем необходимые тулзы для Python:

Устанавливаем пакеты, необходимые для сборки NumPy, SciPy и Matplotlib:

Создаем виртуальное окружение питона (virtualenv).

Ставим необходимые для курса пакеты:

Почему не сделать apt-get install Вы можете сделать что-то вроде

и установить питоновские пакеты в систему из репозитория Debian. Однако, пакеты debian содержат достаточно старые версии python-пакетов (к примеру, IPython Notebook у вас будет значительно менее модный). Свежие версии загружаются утилитой pip из репозитория PyPI.

Читайте также:  Windows 10 лишний языковой пакет

Запуск IPython Notebook

Для того, чтобы графики встраивались в отчёт, а не открывались в отдельном окне, IPython Notebook нужно запускать следующим образом:

Либо в уже запущенном Notebook выполнить

Использование virtualenv

virtualenv позволяет заключить в отдельный каталог необходимые версии python-пакетов и использовать только их. Используя virtualenv, Вы можете устанавливать свежие версии пакетов из Python Package Index, при этом не получить проблем с несовместимостью версий пакетов с установленными в системе. Нормальным решением также является установка python-пакетов через pip в системные каталоги. Для этого не нужно ничего с virtualenv, но запускать pip при этом следует от рута:

Но напоминаем, пакеты могут конфликтовать с системными, может фейлиться сборка, могут импортироваться старые версии и возникать другие проблемы. Для создания виртуального окружения необходимо сказать

при этом будет создан каталог yourenv с чистым окружением без каких либо пакетов. Для использования виртуального окружения можно использовать команды из соответствующего каталога:

Для того чтобы не говорить префикс yourenv/bin, удобно в текущей сесии командной строки выставить необходимые переменные окружения (активировать виртуальное окружение):

После активации, у приглашения командной строки появится префикс (yourenv). Для того, чтобы деактивировать виртуальное окружение, необходимо сказать

Ipython notebook установка под windows

Установка Python + Jupyter Notebook (название старой версии — Ipython Notebook):

Windows
1. Если у вас не установлен python3, скачайте дистрибутив с официального сайта. Внимание: нужно скачивать версию 3.4, так как версия 3.5 для 32-битных систем не поддерживается. Узнать разрядность системы можно через Система->Свойства.
2. При установке нужно обязательно поставить флажок «Add python.exe to PATH», чтобы путь к исполняемым командам python и pip был записан в переменной среды.
3. После установки откройте командную строку (перезагрузите, если она была открыта) и наберите команду «pip install jupyter».

Linux
1. Установите пакет python3 с помощью вашего пакетного менеджера (в Ubuntu — «sudo apt-get install python3».
2. Перезапустите bash и установите jupyter notebook через pip: «pip install jupyter».

OS X
1. Установите пакетный менеджер Homebrew (http://brew.sh).
2. Установите пакет python3: «brew install python3»
3. Установите jupyter через pip: «pip install jupyter».

Запуск Jupyter Notebook:

1. В командной строке перейдите в папку с файлом *.ipynb или в любую папку выше.
2. Наберите команду «jupyter notebook» (или «ipython notebook»): в браузере должна открыться новая вкладка с интерфейсом jupyter и списком файлов/папок. Выберите нужный или создайте новый — запустится новый jupyter notebook.

Python. Урок 6. Работа с IPython и Jupyter Notebook

IPython представляет собой мощный инструмент для работы с языком Python. Базовые компоненты IPython – это интерактивная оболочка для с широким набором возможностей и ядро для Jupyter. Jupyter notebook является графической веб-оболочкой для IPython, которая расширяет идею консольного подхода к интерактивным вычислениям.

Основные отличительные особенности данной платформы – это комплексная интроспекция объектов, сохранение истории ввода на протяжении всех сеансов, кэширование выходных результатов, расширяемая система “магических” команд, логирование сессии, дополнительный командный синтаксис, подсветка кода, доступ к системной оболочке, стыковка с pdb отладчиком и Python профайлером.

Читайте также:  Windows server 2019 standard evaluation активировать ключом от standart

IPython позволяет подключаться множеству клиентов к одному вычислительному ядру и, благодаря своей архитектуре, может работать в параллельном кластере.

В Jupyter notebook вы можете разрабатывать, документировать и выполнять приложения на языке Python, он состоит из двух компонентов: веб-приложение, запускаемое в браузере, и ноутбуки – файлы, в которых можно работать с исходным кодом программы, запускать его, вводить и выводить данные и т.п.

Веб приложение позволяет:

  • редактировать Python код в браузере, с подсветкой синтаксиса, автоотступами и автодополнением;
  • запускать код в браузере;
  • отображать результаты вычислений с медиа представлением (схемы, графики);
  • работать с языком разметки Markdown и LaTeX.

Ноутбуки – это файлы, в которых сохраняются исходный код, входные и выходные данные, полученные в рамках сессии. Фактически, он является записью вашей работы, но при этом позволяет заново выполнить код, присутствующий на нем. Ноутбуки можно экспортировать в форматы PDF, HTML.

Установка и запуск

Jupyter Notebook входит в состав Anaconda. Описание процесса установки можно найти в первом уроке. Для запуска Jupyter Notebook перейдите в папку Scripts (она находится внутри каталога, в котором установлена Anaconda) и в командной строке наберите:

В результате будет запущена оболочка в браузере.

Примеры работы

Будем следовать правилу: лучше один раз увидеть… Рассмотрим несколько примеров, выполнив которые, вы сразу поймете принцип работы с Jupyter notebook.

Запустите Jupyter notebook и создайте папку для наших примеров, для этого нажмите на New в правой части экрана и выберите в выпадающем списке Folder.

По умолчанию папке присваивается имя “Untitled folder”, переименуем ее в “notebooks”: поставьте галочку напротив имени папки и нажмите на кнопку “Rename”.

Зайдите в эту папку и создайте в ней ноутбук, воспользовавшись той же кнопкой New, только на этот раз нужно выбрать “Python [Root]”.

В результате будет создан ноутбук.

.

Код на языке Python или текст в нотации Markdown нужно вводить в ячейки:

Если это код Python, то на панели инструментов нужно выставить свойство “Code”.

Если это Markdown текст – выставить “Markdown”.

Для начал решим простую арифметическую задачу: выставите свойство “Code”, введите в ячейке “2 + 3” без кавычек и нажмите Ctrl+Enter или Shift+Enter, в первом случае введенный вами код будет выполнен интерпретатором Python, во втором – будет выполнен код и создана новая ячейка, которая расположится уровнем ниже так, как показано на рисунке.

Если у вас получилось это сделать, выполните еще несколько примеров.

Основные элементы интерфейса Jupyter notebook

У каждого ноутбука есть имя, оно отображается в верхней части экрана. Для изменения имени нажмите на его текущее имя и введите новое.

Из элементов интерфейса можно выделить, панель меню:

и рабочее поле с ячейками:

Ноутбук может находиться в одном из двух режимов – это режим правки (Edit mode) и командный режим (Command mode). Текущий режим отображается на панели меню в правой части, в режиме правки появляется изображение карандаша, отсутствие этой иконки значит, что ноутбук находится в командном режиме.

Читайте также:  Команда для синхронизации времени linux

Для открытия справки по сочетаниям клавиш нажмите “Help->Keyboard Shortcuts”

В самой правой части панели меню находится индикатор загруженности ядра Python. Если ядро находится в режиме ожидания, то индикатор представляет собой окружность.

Если оно выполняет какую-то задачу, то изображение измениться на закрашенный круг.

Запуск и прерывание выполнения кода

Если ваша программа зависла, то можно прервать ее выполнение выбрав на панели меню пункт Kernel -> Interrupt.

Для добавления новой ячейки используйте Insert->Insert Cell Above и Insert->Insert Cell Below.

Для запуска ячейки используете команды из меню Cell, либо следующие сочетания клавиш:

Ctrl+Enter – выполнить содержимое ячейки.

Shift+Enter – выполнить содержимое ячейки и перейти на ячейку ниже.

Alt+Enter – выполнить содержимое ячейки и вставить новую ячейку ниже.

Как сделать ноутбук доступным для других людей?

Существует несколько способов поделиться своим ноутбуком с другими людьми, причем так, чтобы им было удобно с ним работать:

  • передать непосредственно файл ноутбука, имеющий расширение “.ipynb”, при этом открыть его можно только с помощью Jupyter Notebook;
  • сконвертировать ноутбук в html;
  • использовать https://gist.github.com/ ;
  • использовать http://nbviewer.jupyter.org/.

Вывод изображений в ноутбуке

Печать изображений может пригодиться в том случае, если вы используете библиотеку matplotlib для построения графиков. По умолчанию, графики не выводятся в рабочее поле ноутбука. Для того, чтобы графики отображались, необходимо ввести и выполнить следующую команду:

%matplotlib inline

Пример вывода графика представлен на рисунке ниже.

Магия

Важной частью функционала Jupyter Notebook является поддержка магии. Под магией в IPython понимаются дополнительные команды, выполняемые в рамках оболочки, которые облегчают процесс разработки и расширяют ваши возможности. Список доступных магических команд можно получить с помощью команды

%lsmagic

Для работы с переменными окружения используется команда %env.

Запуск Python кода из “.py” файлов, а также из других ноутбуков – файлов с расширением “.ipynb”, осуществляется с помощью команды %run.

Для измерения времени работы кода используйте %%time и %timeit.

%%time позволяет получить информацию о времени работы кода в рамках одной ячейки.

%timeit запускает переданный ей код 100000 раз (по умолчанию) и выводит информацию среднем значении трех наиболее быстрых прогонах.

Информацию по остальным магическим командам можете найти здесь:

Интересные примеры ноутбуков, в которых довольно полно раскрыты возможности Jupyter Notebook можно найти в ресурсах, перечисленных ниже.

P.S.

Если вам интересна тема анализа данных, то мы рекомендуем ознакомиться с библиотекой Pandas. На нашем сайте вы можете найти вводные уроки по этой теме. Все уроки по библиотеке Pandas собраны в книге “Pandas. Работа с данными”.

Python. Урок 6. Работа с IPython и Jupyter Notebook : 2 комментария

” это интерактивная оболочка для с широким набором возможностей ”
после ДЛЯ пропало слово

Оцените статью