- Управление памятью в Linux
- Cached
- dentry/inode caches
- Buffer Cache
- Отображение памяти в команде top: VIRT, RES и SHR
- Подкачка памяти — swap
- Кэширование памяти swap (Swap Cach)
- Подкачка памяти
- Заключение
- Как linux работает с оперативной памятью
- Какая бывает память?
- Физическая и виртуальная
- Файловая и анонимная
- Вытесняемая и нет
- Методы управления подсистемой памяти
- mlock
- OOM killer
- cgroups
- Операции с памятью
- Итого
Управление памятью в Linux
Я думаю, что обычно у каждого пользователя Linux рано или поздно возникает следующий вопрос, задаваемый при администрировании рабочей станции или сервера — «Почему в Linux используется вся моя оперативная память, хотя никакой большой работы не выполняется? «. К нему сегодня я добавлю еще один вопрос, который, я уверен, обычен для многих системных администраторов Linux — «Почему команда free показывает память swap и почему у меня так много свободной оперативной памяти?», так что сегодняшнее мое исследование SwapCached, которое я представляю вам, может оказаться полезным, либо, по крайней мере, ознакомит, как я надеюсь, с информацией об управлении памятью в системе Linux.
В Linux применяется следующее основное правило: неиспользуемая страница оперативной памяти считается потерянной памятью. Оперативная память тратится не только для данных, используемых прикладными приложениями. В ней также хранятся данные для самого ядра и, самое главное, в эту память могут отображаться данные, хранящиеся на жестком диске, что используется для супер-быстрого к ним доступа — команда top указывает об этом в столбцах «buffers/cache» («буферы / кэш»), «disk cache» («дисковый кэш)» или «cached» («кэшировано»). Кэшированная память по сути свободна, поскольку ее можно быстро освободить в случае, если работающей (или только что запущенной) программе потребуется память.
Сохранение кэша означает, что если кому-нибудь еще раз потребуются те же самые данные, то есть большая вероятность, что они все еще будут находиться в кэше в оперативной памяти.
Поэтому первое, чем можно воспользоваться в вашей системе, это команда free , которая предоставит вам первоначальную информацию о том, как используется ваша оперативная память.
Ниже приведены данные, выдаваемые на моем старом ноутбуке с системой Xubuntu:
В строке -/+ buffers/cache показывается, сколько памяти используется и сколько памяти свободно с точки зрения ее использования в приложениях. В этом примере приложениями уже используется 972 Мб памяти и еще 534 МБ памяти могут быть использованы.
Вообще говоря, если используется хотя бы немного памяти подкачки swap, то использование памяти вообще не повлияет на производительность системы.
Но если вы хотите получить более подробную информацию о вашей памяти, то вы должны проверить файл /proc/meminfo; в моей системе Xubuntu с ядром 3.2.0-25-generic результат будет следующим:
Что означает MemTotal (Всего памяти) и MemFree (Свободная память), понятно для всех; остальные значения поясняются дальше:
Cached
Страничный кэш в системе Linux («Cached:» в meminfo) является в большинстве систем самым крупным потребителем памяти. Каждый раз, когда вы выполняете операцию чтения read () из файла, расположенного на диске, данные считываются в память и помещаются в страничный кэш. После того, как операция read() завершается, ядро может просто выбросить страницу памяти, так как она не используется. Однако, если вы второй раз выполняете операцию чтения той же самой части файла, данные будут считываться непосредственно из памяти и обращения к диску не будет. Это невероятно ускоряет работу и, поэтому, в Linux так интенсивно используется кэширование страниц: ставка делается на то, что если вы обратились к некоторой странице дисковой памяти, то вскоре вы обратитесь к ней снова.
dentry/inode caches
Каждый раз, когда вы в файловой системе выполняете операцию «ls’» (или любую другую операцию: open(), stat() и т.д.), ядру требуются данные, которые находятся на диске. Ядро анализирует эти данные, находящиеся на диске, и помещает его в некоторых структуры данных, независимые от файловой системы, с тем, чтобы они могли в различных файловых системах обрабатываться одним и тем же образом. Таким же самым образом, как кэширование страниц в приведенных выше примерах, ядро может после того, как будет завершена команда «ls», стереть эти структуры. Тем не менее, делается такое же предположение, как и раньше: если вы однажды считали эти данные, вы обязательно прочитаете их еще раз. Ядро хранит эту информацию в нескольких местах «кэша», которые называются кэш памятью dentry и inode. Кэш память dentries являются общей для всех файловых систем, но каждая файловая система имеет свой собственный кэш inodes.
Эта оперативная память является в meminfo составной частью «Slab:»
Вы можете просмотреть различную кэш память и узнать ее размеры с помощью следующей команды:
Buffer Cache
Кэш буфера («Buffers:» в meminfo) является близким родственником кэш памяти dentry/inode. Данные dentries и inodes, размещаемые в памяти, представляют собой описание структур на диске, но располагаются они по-разному. Это, возможно, связано с тем, что у нас в копии, расположенной в памяти, используется такая структура, как указатель, но на диске ее нет. Может также случиться, что на диске байты будут располагаться не в том порядке, как это нужно процессору.
Отображение памяти в команде top: VIRT, RES и SHR
Если вы запускаете команду top , то три строки будут описывать к использованию памяти. Вы должны понимать их значение с тем, чтобы понять, сколько памяти требуется вашему серверу.
VIRT является сокращением от virtual size of a process (виртуальный размер процесса) и представляет собой общий объем используемой памяти: памяти, отображаемой самой в себя (например, памяти видеокарты для сервера X), файлов на диске, которые отображаются в память (особенно это касается разделяемых библиотек) и памяти, разделяемой совместно с другими процессами. Значение VIRT указывает, сколько памяти в настоящий момент доступно программе.
RES является сокращением от resident size (размер резидентной части) и является точным указателем того, сколько в действительности потребляется процессом реальной физической памяти. (Что также соответствует значению, находящемуся непосредственно в колонке %MEM). Это значение практически всегда меньше, чем размер VIRT, т.к. большинство программ зависит от библиотеки C.
SHR показывает, какая величина от значения VIRT является в действительности разделяемой (по памяти или за счет использования библиотек). В случае библиотек, это не обязательно означает, что вся библиотека находится в резидентной памяти. Например, если программа использует только несколько функций библиотеки, то при отображении в память будет использована вся библиотека, что будет учтено в значениях VIRT и SHR, но, на самом деле, будет загружена часть библиотеки, содержащая используемые функции, и это будет учтено в значении RES.
Подкачка памяти — swap
Теперь мы видим некоторую информацию о нашей оперативной памяти, но что происходит, когда больше нет свободной оперативной памяти? Если у меня нет свободной памяти, а мне нужна память для страничного кэширования, кэширования inode или кэширования dentry, то где я ее могу получить?
Прежде всего, ядро пытается не допустить, чтобы у вас значение свободной оперативной памяти приближалось к 0 байтов. Это связано с тем, что когда нужно освободить оперативную память, то обычно требуется выделить немного больше памяти. Это обусловлено тем, что нашему ядру требуется своего рода «рабочее пространство» для выполнения своих действий, и поэтому, если размер свободной оперативной памяти становится равным нулю, ядро ничего больше сделать не сможет.
На основании общего объема оперативной памяти и соотношения ее различных типов (память high/low), ядро эвристически определяет то количество памяти в качестве рабочего пространства, при котором оно чувствует себя комфортно. Когда эта величина достигается, ядро начинает возвращать память для других различных задач, описанных выше. Ядро может вернуть себе память из любой из этих задач.
Однако, есть другой потребитель памяти, о котором мы, возможно, уже забыли: данные пользовательских приложений.
Как только ядро принимает решение, что ему не требуется получать память из каких-либо других источников, которые мы описывали ранее, оно запускает память подкачки swap. В ходе этого процесса оно получает данные пользовательских приложений и записывает их в специальное место (или места) на диске. Обратите внимание, что это происходит не только тогда, когда оперативная память близка к заполнению, ядро может принять решение перенести в память swap также данные, находящиеся в оперативной памяти, если они некоторое время не использовались (смотрите раздел «Подкачка памяти»).
По этой причине, даже система с огромным количеством оперативной памяти (даже если ее правильно настроить) может использовать память подкачки swap. Есть много страниц памяти, в которых находятся данные пользовательских приложений, но эти страницы используются редко. Все это является причиной, чтобы перенести их в раздел swap и использовать оперативную память для других целей.
Вы можете с помощью команды free проверить, используется ли память swap; для примера, который я уже использовал выше, в последней строке выдаваемых данных показывается информация о размере памяти swap:
Мы видим, что на этом компьютере уже используется 24 мегабайта памяти swap и для использования доступно еще 462 Мб.
Таким образом, сам факт использования памяти swap не является доказательством того, что в системе при ее текущей рабочей нагрузке слишком мало оперативной памяти. Лучший способ это определить с помощью команды vmstat — если вы увидите, что много страниц памяти swap перемещаются на диск и обратно, то это означает, что память swap используется активно, что система «пробуксовывает» или что ей нужна новая оперативная память поскольку это ускорит подкачку данных приложений.
На моем ноутбуке Gentoo, когда он простаивает, это выглядит следующим образом:
Обратите внимание на то, что в выходных данных команды free у вас есть только 2 значения, относящихся к памяти swap: free (свободная память) и used (используемая память), но для памяти подкачки swap также есть еще одно важное значение: Swap cache (показатель кэширования памяти подкачки).
Кэширование памяти swap (Swap Cach)
Кеширование памяти swap по сути очень похоже на страничное кеширование. Страница данных пользовательского приложения, записываемая на диск, очень похожа на страницу данных файла, находящуюся на диске. Каждый раз, когда страница считывается из файла подкачки («si» в vmstat), она помещается в кэш подкачки. Так же, как страничное кэширование, все это выполняется ядром. Ядро решает, нужно ли вернуть обратно на диск конкретную страницу. Если в этом возникнет необходимость, то можно проверить, есть ли копия этой страницы на диске и можно просто выбросить страницу из памяти. Это избавит нас от затрат на переписывание страницы на диск.
Кэширование памяти swap действительно полезно только когда мы читаем данные из памяти swap и никогда в нее не делаем записи. Если мы выполняем запись на страницу, то копия на диске не будет соответствовать копии, находящейся в памяти. Если это случится, то мы должны произвести запись страницы на диск точно также, как мы делали это первый раз. Несмотря на то, что затраты на сохранение всей страницы больше, чем затраты на запись небольшого измененного кусочка, система будет работать лучше.
Поэтому, чтобы узнать, что память swap действительно используется, мы должны из значения SwapUsed вычесть значение SwapCached, вы можете найти эту информацию в /proc/meminfo.
Подкачка памяти
Когда приложению нужна память, а вся оперативная память полностью занята, то в распоряжении ядра есть два способа освободить память: оно может либо уменьшить размер дискового кэша в оперативной памяти, убирая устаревшие данные, либо оно может сбросить на диск в swap раздел несколько достаточно редко используемых порций (страниц) программы. Трудно предсказать, какой из способов будет более эффективным. Ядро, исходя из недавней истории действий в системе, делает попытку приблизительно отгадать на данный момент эффективность каждого из этих двух методов.
До ядер версии 2.6 у пользователя не было возможности влиять на эти оценки, так что могла возникнуть ситуации, когда ядро часто делало неправильный выбор, что приводило к пробуксовыванию и низкой производительности. В версии 2.6 ситуация с подкачкой памяти была изменена.
Подкачке памяти назначается значение от 0 до 100, которое изменяет баланс между подкачкой памяти приложений и освобождением кэш памяти. При значении 100 ядро всегда предпочтет найти неактивные страницы и сбросить их на диск в раздел swap; в других случаях этот сброс будет осуществляться в зависимости от того, сколько памяти занимает приложение и насколько трудно выпонять кэширование при поиске и удалении неактивных элементов.
По умолчанию для этого устанавливается значение 60. Значение 0 дает нечто близкое к старому поведению, когда приложения, которым нужна память, заставляли немного уменьшить размер кэша оперативной памяти. Для ноутбуков, для которых предпочтительно иметь диски с меньшей скоростью вращения, рекомендуется использовать значение 20 или меньше.
Заключение
В этой статье я поместил информацию, которая была мне полезной в моей работе в качестве системного администратора, и я надеюсь, что она может оказаться полезной и для вас.
Источник
Как linux работает с оперативной памятью
Подсистема работы с оперативной памятью в Linux — достаточно многогранная конструкция. Чтобы разобраться в её деталях нужно целенаправленно погрузиться в тему, с обязательным чтением исходников ядра, но это нужно не каждому. Для разработки и эксплуатации серверного программного обеспечения важно иметь хотябы базовое предстваление о том, как она работает, но меня не перестает удивлять насколько небольшая доля людей им обладает. В этом посте я постараюсь кратко пробежаться по основным вещам, без понимания которых на мой взгляд очень легко натворить глупостей.
Какая бывает память?
Физическая и виртуальная
Начнем издалека. В спецификации любого компьютера и в частности сервера непременно числится надпись «N гигабайт оперативной памяти» — именно столько в его распоряжении находится физической памяти.
Задача распределения доступных ресурсов между исполняемым программным обеспечением, в том числе и физической памяти, лежит на плечах операционной системы, в нашем случае Linux. Для обеспечения иллюзии полной независимости, она предоставляет каждой из программ свое независимоевиртуальное адресное пространство и низкоуровневый интерфейс работы с ним. Это избавляет их от необходимости знать друг о друге, размере доступной физической памяти и текущей её занятости. Адреса в виртуальном пространстве процессов называют логическими.
Для отслеживания соответствия между физической и виртуальной памятью ядро Linux использует иерархический набор структур данных в своей служебной области физической памяти (только оно работает с ней напрямую), а также специализированные аппаратные контуры, которые в совокупности называют MMU .
Следить за каждым байтом памяти в отдельности было бы накладно, по-этому ядро оперирует достаточно большими блоками памяти — страницами, типовой размер которых составляет 4 килобайта.
Также стоит упомянуть, что на аппаратном уровне как правило есть поддержка дополнительного уровня абстракции в виде «сегментов» оперативной памяти, с помощью которых можно разделять программы на части. В отличии от других операционных систем, в Linux она практически не используется — логический адрес всегда совпадает с линейным (адресом внутри сегмента, которые сконфигурированы фиксированным образом).
Файловая и анонимная
У приложений существует много способов выделить себе память для тех или иных нужд. Высокоуровневые языки программирования и библиотеки часто прячут от разработчиков какой из них в реальности использовался и другие детали (хотя их всегда можно «раскусить» с помощью strace ). Если углубляться в особенности каждого доступного варианта, эта статья быстро бы превратилась в книгу. Вместо этого предлагаю разделить их на две, на мой взгляд, крайне важные группы по тому, какую память они выделяют:
- Файловой памяти однозначно соответствует какой-либо файл или его часть в файловой системе. Первым делом в ней как правило находится исполняемый код самой программы. Для прикладных задач можно запросить отображение файла в виртуальное адресное пространство процесса с помощью системного вызова mmap — после чего с ним можно работать как с любой другой областью памяти без явного чтения/записи, что будет при этом происходить с данными в файловой системе и что будут видеть другие процессы «отобразившие» этот же файл зависит от настроек.
- Любую другую выделенную память называют анонимной, так как ей не соответствует никакой файл, которые как известно именованы. Сюда попадают как переменные на стеке, так и области, выделенные с помощью функций вроде malloc (к слову, за сценой для выделения больших блоков памяти они обычно тоже используют mmap с особым набором настроек, а для всего остального — brk/sbrk или выдают ранее освобожденную память).
На первый взгляд отличия не выглядят чем-то особенным, но тот факт, что области файловой памяти именованы, позволяет операционной системе экономить физическую память, порой очень значительно, сопоставляя виртуальные адреса нескольких процессов, работающих с одним и тем же файлом, одной физической странице в памяти. Это работает прозрачно, начиная от кода запущенных нескольких копий приложений, заканчивая специально сконструированными под эту оптимизацию систем.
Вытесняемая и нет
Суммарный объем используемой виртуальной памяти всех программ запросто может превышать объем доступной физической памяти. При этом в каждый конкретный момент времени приложениями может использоваться лишь небольшое подмножество хранимых по виртуальным адресам данных. Это означает, что операционная система может откладывать не используемые в данный момент данные из оперативной памяти на жесткий диск («вытесняя»» их из памяти), а затем при попытке к этим данным обратиться — скопировать обратно в физическую оперативную память. Этот механизм официально называется major page fault, но под просто page fault как правило подразумевают тоже её, так как minor page fault мало кого заботит (отличие в том, что в случае minor ядру удается найти запрашиваемые данные уже загруженными в память с какой-то другой целью и обращения к диску в итоге не происходит).
На время восстановления запрашиваемых приложением данных его выполнение прерывается и управление передается ядру для выполнения соответствующей процедуры. Время, которое потребуется, чтобы приложение смогло продолжить свою работу, напрямую зависит от типа используемого жесткого диска:
- Прочитать 4Кб данных с обычного серверного жесткого диска 7200rpm занимает порядка 10 мс, при хорошем стечении обстоятельств чуть меньше.
- Если вытесненных страниц оказывается много, запросто могут набегать заметные доли секунды (как условным пользователям, так и на внутренних приборах, в зависимости от задачи).
- Особенно опасны циклические pagefaults, когда есть две или более регулярно используемые области памяти, которые вместе не помещаются в физическую память, по-этому бесконечно вытесняют друг друга туда-обратно.
- При этом диск вынужден делать честный seek, что само по себе тоже может быть не кстати. Например, если с этим же диском работает какая-либо база данных.
- Если используется SSD , то ситуация несколько более радужная — из-за отсутствия механического движения аналогичная операция занимает примерно на порядок меньше, около 1 мс или её доли, в зависимости от типа и конкретной модели диска. Но годы идут, а SSD так и остаются нишевым компромиссным продуктом по цене-объему.
- А теперь для сравнения: если бы страница уже была в памяти, то при обращении к ней счет шел бы на сотни наносекунд. Это почти на 4 порядка быстрее, чем pagefault, даже на SSD .
Стоит отметить, что с точки зрения приложения всё это прозрачно и является внешним воздействием, то есть может происходить в самый не подходящий, с точки зрения решаемой им задачи, момент.
Думаю понятно, что приложения, которым важна высокая производительность и стабильное время отклика, должны избегать pagefault’ов всеми доступными методами, к ним и перейдем.
Методы управления подсистемой памяти
С файловой памятью всё просто: если данные в ней не менялись, то для её вытеснения делать особо ничего не нужно — просто перетираешь, а затем всегда можно восстановить из файловой системы.
С анонимной памятью такой трюк не работает: ей не соответствует никакой файл, по-этому чтобы данные не пропали безвозвратно, их нужно положить куда-то ещё. Для этого можно использовать так называемый «swap» раздел или файл. Можно, но на практике не нужно. Если swap выключен, то анонимная память становится невытесняемой, что делает время обращения к ней предсказуемым.
Может показаться минусом выключенного swap, что, например, если у приложения утекает память, то оно будет гарантированно зря держать физическую память (утекшая не сможет быть вытеснена). Но на подобные вещи скорее стоит смотреть с той точки зрения, что это наоборот поможет раньше обнаружить и устранить ошибку.
mlock
По-умолчанию вся файловая память является вытесняемой, но ядро Linux предоставляет возможность запрещать её вытеснение с точностью не только до файлов, но и до страниц внутри файла.
Для этого используется системный вызов mlock на области виртуальной памяти, полученной с помощью mmap . Если спускаться до уровня системных вызовов не хочется, рекомендую посмотреть в сторону консольной утилиты vmtouch , которая делает ровно то же самое, но снаружи относительно приложения.
Несколько примеров, когда это может быть целесообразно:
- У приложения большой исполняемый файл с большим количеством ветвлений, некоторые из которых срабатывают редко, но регулярно. Такого стоит избегать и по другим причинам, но если иначе никак, то чтобы не ждать лишнего на этих редких ветках кода — можно запретить им вытесняться.
- Индексы в базах данных часто физически представляют собой именно файл, с которым работают через mmap , а mlock нужен чтобы минимизировать задержки и число операций ввода-вывода на и без того нагруженном диске(-ах).
- Приложение использует какой-то статический словарь, например с соответствием подсетей IP-адресов и стран, к которым они относятся. Вдвойне актуально, если на одном сервере запущено несколько процессов, работающих с этим словарем.
OOM killer
Перестаравшись с невытесняемой памятью не трудно загнать операционную систему в ситуацию, когда физическая память кончилась, а вытеснять ничего нельзя. Безысходной она выглядит лишь на первый взгляд: вместо вытеснения память можно освободить.
Происходит это достаточно радикальными методами: послуживший названием данного раздела механизм выбирает по определенному алгоритму процесс, которым наиболее целесообразно в текущий момент пожертвовать — с остановкой процесса освобождается использовавшаяся им память, которую можно перераспределить между выжившими. Основной критерий для выбора: текущее потребление физической памяти и других ресурсов, плюс есть возможность вмешаться и вручную пометить процессы как более или менее ценные, а также вовсе исключить из рассмотрения. Если отключить OOM killer полностью, то системе в случае полного дефицита ничего не останется, как перезагрузиться.
cgroups
По-умолчанию все пользовательские процессы наравне претендуют на почти всю физически доступную память в рамках одного сервера. Это поведение редко является приемлемым. Даже если сервер условно-однозадачный, например только отдает статические файлы по HTTP с помощью nginx, всегда есть какие-то служебные процессы вроде syslog или какой-то временной команды, запущенной человеком. Если же на сервере одновременно работает несколько production процессов, например, популярный вариант — подсадить к веб-серверу memcached, крайне желательно, чтобы они не могли начать «воевать» друг с другом за память в случае её дефицита.
Но на мой взгляд именно контроль за потреблением памяти — самый необходимый минимум, который определенно стоит настроить, остальное уже по желанию/необходимости.
В многопроцессорных системах не вся память одинакова. Если на материнской плате предусмотрено N процессоров (например, 2 или 4), то как правило все слоты для оперативной памяти физически разделены на N групп так, что каждая из них располагается ближе к соответствующему ей процессору — такую схему называют NUMA .
Таким образом, каждый процессор может обращаться к определенной 1/N части физической памяти быстрее (примерно раза в полтора), чем к оставшимся (N-1)/N .
Ядро Linux самостоятельно умеет это всё определять и по-умолчанию достаточно разумным образом учитывать при планировании выполнения процессоров и выделении им памяти. Посмотреть как это все выглядит и подкорректировать можно с помощью утилиты numactl и ряда доступных системных вызовов, в частности get_mempolicy / set_mempolicy .
Операции с памятью
Есть несколько тем, с которыми в реальности сталкиваются лишь C/C++ разработчики низкоуровневых систем, и не мне им про это рассказывать. Но даже если напрямую с этим не сталкиваться на мой взгляд полезно в общих чертах знать, какие бывают нюансы:
- Операции, работающие с памятью:
- В большинстве своем не атомарны (то есть другой поток может их «увидеть» на полпути), без явной синхронизации атомарность возможна только для блоков памяти не больше указателя (т.е. как правило 64 бита) и то при определенных условиях.
- В реальности происходят далеко не всегда в том порядке, в котором они написаны в исходном коде программы: процессоры и компиляторы на правах оптимизации могут менять их порядок, как считают нужным. В случае многопоточных программ эти оптимизации часто могут приводить к нарушению логики их работы. Для предотвращения подобных ошибок разработчики могут использовать специальные инструменты, в частности барьеры памяти — инструкции, которые запрещают переносить операции с памятью между частями программы до неё и после.
- Новые процессы создаются с помощью системного вызова fork , который порождает копию текущего процесса (чтобы запустить другую программу в новом процессе существует отдельное семейство системных вызовов — exec ), у которого виртуальное пространство практически полностью идентично родительскому, что не потребляет дополнительной физической памяти до тех пор, пока тот или другой не начнут его изменять. Этот механизм называется copy on write и на нем можно играть для создания большого числа однотипных независимых процессов (например, обрабатывающих какие-то запросы), с минимумом дополнительных расходов физической памяти — в некоторых случаях так жить удобнее, чем с многопоточным приложением.
- Между процессором и оперативной памятью находится несколько уровней кешей, обращение к которым ещё на порядки быстрее, чем к оперативной памяти. К самому быстрому — доли наносекунд, к самому медленному единицы наносекунд. На особенностях их работы можно делать микро оптимизации, но из высокоуровневых языков программирования до них толком не добраться.
Итого
Подсистему памяти в Linux нельзя бросать на произвол судьбы. Как минимум, стоит следить за следующими показателями и вывести на приборы (как суммарно, так и по процессам или их группам):
В штатном режиме все три показателя должны быть стабильны (а первые два — близки к нулю). Всплески или плавный рост стоит рассматривать как аномалию, в причинах которой стоит разобраться. Какими методами — надеюсь я показал достаточно направлений, куда можно по-копать.
- Статья написана с ориентиром на современные Debian-like дистрибутивы Linux и физическое оборудование с двумя процеcсорами Intel Xeon. Общие принципы ортогональны этому и справедливы даже для других операционных систем, но вот детали могут сильно разниться даже в зависимости от сборки ядра или конфигурации.
- У большинства упомянутых выше системных вызовов, функций и команд есть man , к которому рекомендую обращаться за подробностями об их использовании и работе. Если под рукой нет linux-машины, где можно набрать man foo — они обычно легко ищутся с таким же запросом.
- Если есть желание углубиться в какую-либо из затронутых вскользь тем — пишите об этом в комментариях, любая из них может стать заголовком отдельной статьи.
На последок ещё раз повторю цифры, которые настоятельно рекомендую запомнить:
Источник