Пишем простой модуль ядра Linux
Захват Золотого Кольца-0
Linux предоставляет мощный и обширный API для приложений, но иногда его недостаточно. Для взаимодействия с оборудованием или осуществления операций с доступом к привилегированной информации в системе нужен драйвер ядра.
Модуль ядра Linux — это скомпилированный двоичный код, который вставляется непосредственно в ядро Linux, работая в кольце 0, внутреннем и наименее защищённом кольце выполнения команд в процессоре x86–64. Здесь код исполняется совершенно без всяких проверок, но зато на невероятной скорости и с доступом к любым ресурсам системы.
Не для простых смертных
Написание модуля ядра Linux — занятие не для слабонервных. Изменяя ядро, вы рискуете потерять данные. В коде ядра нет стандартной защиты, как в обычных приложениях Linux. Если сделать ошибку, то повесите всю систему.
Ситуация ухудшается тем, что проблема необязательно проявляется сразу. Если модуль вешает систему сразу после загрузки, то это наилучший сценарий сбоя. Чем больше там кода, тем выше риск бесконечных циклов и утечек памяти. Если вы неосторожны, то проблемы станут постепенно нарастать по мере работы машины. В конце концов важные структуры данных и даже буфера могут быть перезаписаны.
Можно в основном забыть традиционные парадигмы разработки приложений. Кроме загрузки и выгрузки модуля, вы будете писать код, который реагирует на системные события, а не работает по последовательному шаблону. При работе с ядром вы пишете API, а не сами приложения.
У вас также нет доступа к стандартной библиотеке. Хотя ядро предоставляет некоторые функции вроде printk (которая служит заменой printf ) и kmalloc (работает похоже на malloc ), в основном вы остаётесь наедине с железом. Вдобавок, после выгрузки модуля следует полностью почистить за собой. Здесь нет сборки мусора.
Необходимые компоненты
Прежде чем начать, следует убедиться в наличии всех необходимых инструментов для работы. Самое главное, нужна машина под Linux. Знаю, это неожиданно! Хотя подойдёт любой дистрибутив Linux, в этом примере я использую Ubuntu 16.04 LTS, так что в случае использования других дистрибутивов может понадобиться слегка изменить команды установки.
Во-вторых, нужна или отдельная физическая машина, или виртуальная машина. Лично я предпочитаю работать на виртуальной машине, но выбирайте сами. Не советую использовать свою основную машину из-за потери данных, когда сделаете ошибку. Я говорю «когда», а не «если», потому что вы обязательно подвесите машину хотя бы несколько раз в процессе. Ваши последние изменения в коде могут ещё находиться в буфере записи в момент паники ядра, так что могут повредиться и ваши исходники. Тестирование в виртуальной машине устраняет эти риски.
И наконец, нужно хотя бы немного знать C. Рабочая среда C++ слишком велика для ядра, так что необходимо писать на чистом голом C. Для взаимодействия с оборудованием не помешает и некоторое знание ассемблера.
Установка среды разработки
На Ubuntu нужно запустить:
Устанавливаем самые важные инструменты разработки и заголовки ядра, необходимые для данного примера.
Примеры ниже предполагают, что вы работаете из-под обычного пользователя, а не рута, но что у вас есть привилегии sudo. Sudo необходима для загрузки модулей ядра, но мы хотим работать по возможности за пределами рута.
Начинаем
Приступим к написанию кода. Подготовим нашу среду:
Запустите любимый редактор (в моём случае это vim) и создайте файл lkm_example.c следующего содержания:
Мы сконструировали самый простой возможный модуль, рассмотрим подробнее самые важные его части:
- В include перечислены файлы заголовков, необходимые для разработки ядра Linux.
- В MODULE_LICENSE можно установить разные значения, в зависимости от лицензии модуля. Для просмотра полного списка запустите:
Впрочем, пока мы не можем скомпилировать этот файл. Нужен Makefile. Такого базового примера пока достаточно. Обратите внимание, что make очень привередлив к пробелам и табам, так что убедитесь, что используете табы вместо пробелов где положено.
Если мы запускаем make , он должен успешно скомпилировать наш модуль. Результатом станет файл lkm_example.ko . Если выскакивают какие-то ошибки, проверьте, что кавычки в исходном коде установлены корректно, а не случайно в кодировке UTF-8.
Теперь можно внедрить модуль и проверить его. Для этого запускаем:
Если всё нормально, то вы ничего не увидите. Функция printk обеспечивает выдачу не в консоль, а в журнал ядра. Для просмотра нужно запустить:
Вы должны увидеть строку “Hello, World!” с меткой времени в начале. Это значит, что наш модуль ядра загрузился и успешно сделал запись в журнал ядра. Мы можем также проверить, что модуль ещё в памяти:
Для удаления модуля запускаем:
Если вы снова запустите dmesg, то увидите в журнале запись “Goodbye, World!”. Можно снова запустить lsmod и убедиться, что модуль выгрузился.
Как видите, эта процедура тестирования слегка утомительна, но её можно автоматизировать, добавив:
в конце Makefile, а потом запустив:
для тестирования модуля и проверки выдачи в журнал ядра без необходимости запускать отдельные команды.
Теперь у нас есть полностью функциональный, хотя и абсолютно тривиальный модуль ядра!
Немного интереснее
Копнём чуть глубже. Хотя модули ядра способны выполнять все виды задач, взаимодействие с приложениями — один из самых распространённых вариантов использования.
Поскольку приложениям запрещено просматривать память в пространстве ядра, для взаимодействия с ними приходится использовать API. Хотя технически есть несколько способов такого взаимодействия, наиболее привычный — создание файла устройства.
Вероятно, раньше вы уже имели дело с файлами устройств. Команды с упоминанием /dev/zero , /dev/null и тому подобного взаимодействуют с устройствами “zero” и “null”, которые возвращают ожидаемые значения.
В нашем примере мы возвращаем “Hello, World”. Хотя это не особенно полезная функция для приложений, она всё равно демонстрирует процесс взаимодействия с приложением через файл устройства.
Вот полный листинг:
Тестирование улучшенного примера
Теперь наш пример делает нечто большее, чем просто вывод сообщения при загрузке и выгрузке, так что понадобится менее строгая процедура тестирования. Изменим Makefile только для загрузки модуля, без его выгрузки.
Теперь после запуска make test вы увидите выдачу старшего номера устройства. В нашем примере его автоматически присваивает ядро. Однако этот номер нужен для создания нового устройства.
Возьмите номер, полученный в результате выполнения make test , и используйте его для создания файла устройства, чтобы можно было установить коммуникацию с нашим модулем ядра из пространства пользователя.
(в этом примере замените MAJOR значением, полученным в результате выполнения make test или dmesg )
Параметр c в команде mknod говорит mknod, что нам нужно создать файл символьного устройства.
Теперь мы можем получить содержимое с устройства:
или даже через команду dd :
Вы также можете получить доступ к этому файлу из приложений. Это необязательно должны быть скомпилированные приложения — даже у скриптов Python, Ruby и PHP есть доступ к этим данным.
Когда мы закончили с устройством, удаляем его и выгружаем модуль:
Заключение
Надеюсь, вам понравились наши шалости в пространстве ядра. Хотя показанные примеры примитивны, эти структуры можно использовать для создания собственных модулей, выполняющих очень сложные задачи.
Просто помните, что в пространстве ядра всё под вашу ответственность. Там для вашего кода нет поддержки или второго шанса. Если делаете проект для клиента, заранее запланируйте двойное, если не тройное время на отладку. Код ядра должен быть идеален, насколько это возможно, чтобы гарантировать цельность и надёжность систем, на которых он запускается.
Источник
Пишем модуль ядра Linux: I2C
Данная статья посвящена разработке I2C (Inter-Integrated Circuit) модуля ядра Linux. Далее описан процесс реализация базовой структуры I2C драйвера, в которую можно легко добавить реализацию необходимого функционала.
Опишем входные данные: I2C блок для нового процессора «зашитый» на ПЛИС, запущенный Linux версии 3.18.19 и периферийные устройства (EEPROM AT24C64 и BME280).
Принцип работы I2C достаточно прост, но если нужно освежить знания, то можно почитать тут.
Рисунок 1. Временная диаграмма сигналов шины I2C
Перед тем как начать разрабатывать драйвер посмотрим как user space приложения взаимодействуют с модулем ядра, для этого:
- Реализуем небольшое user space приложение, цель которого прочитать уникальный ID регистра I2C устройства. Данный шаг позволит понять интерфей, через который происходит обмен между модулем ядра и пользовательским приложением;
- Познакомимся с вариантом передачи I2C сообщений модулем ядра;
- Добавим модуль ядра в сборку и опишем аппаратную часть устройств в device tree;
- Реализуем общую структуру (скелет) I2C драйвера с небольшими пояснениями.
К сожалению, прикрепить реальные исходники разработанного драйвера не представляется возможным. Также, хочу заметить, все имена, названия и регистровая карта контроллера изменены. В скелет драйвера ни вошло и половины разработанного функционала, тем не менее, структура драйвера является хорошей отправной точкой при разработке. Примеры I2C драйверов можно посмотреть тут.
Шаг первый
Для начала познакомимся с утилитой i2cdetect. Результат работы i2cdetect выглядит следующим образом:
Утилита последовательно выставляет на I2C шину адреса устройств и при получении положительного ответа (в данном случае положительным ответом является ACK) выводит в консоль номер адреса устройства на шине.
Напишем небольшую программку, которая считывает уникальный ID датчика температуры, и выведем результат ее работы в консоль. Выглядит очень просто:
Становятся понятно что модуль ядра принимает данные в виде полей сообщения i2c_rdwr_ioctl_data. Структура содержит такие поля как i2c_msg и nmsgs, которые используется для передачи:
- .addr — адреса устройства;
- .flags — типа операции (чтение или запись);
- .len — длины текущего сообщения;
- .buf- буфера обмена.
Шаг второй
Теперь, не углубляюсь во внутренности, познакомимся с одним вариантом работы I2C драйвера.
Как уже было установлено, модуль ядра получает сообщения в виде структуры. Для примера рассмотрим алгоритм работы драйвера при выполнении операции записи (аппаратно-зависимая часть):
- Сначала заполняется TX FIFO: первым идет адрес устройства, а после оставшиеся данные на передачу;
- Очищается статусный регистр прерывания ISR и разрешаются прерывания в регистре IER (в данном случае прерывание возникающее при отсутствии данных в TX FIFO);
- Разрешается передача данных и устанавливается старт бит на шине.
Весь последующей обмен данными будет происходить в обработчике прерывания.
Драйвера, которые работают по данному алгоритму, можно найти тут. Также у контроллера может не быть FIFO, а только единственный регистр на передачу, но это частный случай с размером FIFO равным одному.
Шаг третий
Добавим модуль ядра в сборку и опишем аппаратную часть устройств в device tree:
1. Создадим source файл в следующей директории:
В результате появится файл:
2. Добавим конфигурацию драйвера в drivers/i2c/busses/Kconfig:
3. Добавим в сборку драйвер drivers/i2c/busses/Makefile:
4. Добавим в devicetree (*.dts) описание I2C блока, а также сразу поддержу eeprom устройства:
Подробно рассматриваться выше перечисленные шаги не будут, но любопытным читателям можно заглянуть сюда.
Шаг четвертый
После ознакомления с принципом работы драйвера приступим к реализации.
Сначала подключим заголовочные файлы, опишем «виртуальную» регистровую карту, а также представление драйвера I2C.
Главными управляющими регистрами контроллера являются:
- Control Register (CTRL) — регистр управления;
- Interrupt Status Register (ISR) — статусный регистр прерывания;
- Interrupt Enable Register (IER) — регистр маски прерывания.
Сердцем драйвера является структура skel_i2c, которая содержит такие поля как:
- .base — указатель на начало регистровой карты;
- .msg — указатель на текущее сообщение;
- .adap — I2C абстракция (клик).
Перейдем к более практической части, опишем типы поддерживаемых драйвером устройств,
функционал I2C адаптера и интерфейс передачи I2C сообщений:
Из названий структур и функций очевидно их назначение, опишем только главную структуру из представленных выше:
- skel_i2c_driver — описывает имя драйвера, таблицу поддерживаемых устройств и функций, которые вызываются в момент загрузки или удаления модуля ядра из системы.
Пора зарегистрировать драйвер в системе, а значит реализовать функцию инициализации контроллера, а также описать skel_i2c_probe (вызывается в момент загрузки драйвера в систему) и skel_i2c_remove (вызывается в момент удаления драйвера из системы).
Наиболее простой функцией является skel_i2c_remove, которая отключает источник тактовой частоты и освобождает используемую память. Функция skel_i2c_init выполняет первичную инициализацию I2C контроллера.
Как упоминалось ранее skel_i2c_probe регистрирует драйвер в системе. Последовательность действий, условно, можно разделить на два этапа:
- Получение системных ресурсов и регистрацию обработчика прерывания skel_i2c_isr;
- Заполнение полей структуры и вызов процедуры добавления нового I2C адаптера.
После того как драйвер зарегистрирован в системе, можно реализовать логику передачи сообщений по интерфейсу:
В первом шаге было описано взаимодействие user space приложения с модулем ядра системы. После того как мы реализовали внутренности драйвера легко увидеть интерфейс, через который происходит обмен. В общем случае передача сообщений происходит следующем образом:
- skel_i2c_xfer — функция напрямую получает сообщения на передачу и последовательно передает каждое сообщение в skel_i2c_xfer_msg. Если во время передачи данных произошла ошибка, то передача данных останавливается;
- skel_i2c_xfer_msg — функция устанавливает все необходимые поля драйвера и инициирует начало передачи сообщений;
- skel_i2c_isr — процедура обработки прерывания. Здесь происходит обработка ошибок, а также обмен данными по шине. Если все данные отправлены/приняты устанавливается флаг done с помощью вызова функции complete, которая сигнализирует о завершении передачи сообщения.
В статье не описаны некоторые тонкости работы. Например, последовательность действий передачи сообщений, так как реализация данного алгоритма является аппаратно зависимой. Мы же сосредоточились на реализации общей части драйвера вне зависимости от аппаратных особенностей контроллера.
Полный скелет драйвера прикреплен ниже. Пожалуйста, если вы нашли ошибки/неточности, или вам есть что добавить — напишите в ЛС или в комментарии.
Источник