- Таблица маршрутизации в Linux
- Способы просмотра таблицы маршрутизации в Линукс
- Настройка
- ЗАКЛЮЧЕНИЕ
- Настройка маршрутизации в Linux
- Дополнение 1.
- Дополнение 2.
- Дополнение 3.
- Наш рецепт отказоустойчивого Linux-роутера
- Компоненты
- Настройка интерфейсов
- Балансировщик основного шлюза
- Настройка keepalived
- Настройка ISC DHCPD
- Настройка PowerDNS
- Заключение
Таблица маршрутизации в Linux
Статическая маршрутизация — это процесс, в котором администратор сети вручную настраивает сетевые интерфейсы, таким образом, чтобы пакеты пересылались из одной сети в другую.
Администратор создает так называемую таблицу маршрутизации, в ней описаны различные маршруты пакетов.
Любому из маршрутизаторов необходимо понимать на какой хост отправлять следующий пакет. Вот про это и будет идти речь в данной статье. Сегодня мы раскроем вопрос про маршрутизацию в Линукс, функциональность, настройку правил и правильное функционирование.
Когда хосту необходимо послать пакет другому хосту он просматривает таблицу маршрутизации. В данной таблице указаны IP-address конечного пункта назначения, метрика, название интерфейсов, адреса маршрутизаторов по которые могут отправить пакет конечному получателю.
В случае отсутствия маршрута для узла, применяется так называемый default шлюз, default маршрут. Подобное можно наблюдать на маршрутизаторе. Он сравнивает необходимый IP-address с таблицей маршрутизации, затем посылает дальше.
Ниже будем рассматривать проверку проходящих маршрутов в системе, процесс настройки новых.
Способы просмотра таблицы маршрутизации в Линукс
Для просмотра таблицы в ОС Линукс можно использовать команду:
Как видно из скриншота выше, команда показала всего две записи. В первой записи указан шлюз (gateway) 192.168.168.254, вторая запись говорит о наличии доступа в подсеть 192.168.168.0 на интерфейсе eth0.
Другой способ вывести информацию о статических маршрутов — использовать команду «route», однако, как правило утилита просит права супер пользователя, поэтому предварительно введем «su-«.
Бывает, выводимых данных route и netstat недостаточно, так как в них выводится легкая информация, ее не хватает для понимания всей картины. Чтобы получить более подробную таблицу, можно воспользоваться утилитой «routel».
В этой информации содержится:
- target (цель) — IP-адрес.
- gateway — адрес шлюза.
- source — адрес отправителя.
- dev — интерфейс.
Наиболее подходящий метод для просмотра таблицы маршрутизации в ОС Линукс – использовать утилиту «ip».
$ ip route
Подробней про «ip» можно посмотреть в другой статье: https://www.vseprolinux.ru/komanda-ip
- default – IP-адрес по умолчанию.
- via 192.168.168.254 — адрес шлюза, куда будут отправлять пакеты по умолчанию.
- dev eth0 — интерфейс сети, за счёт него открывается доступ к шлюзу.
- proto kernel — обозначает, что маршрут устанавливался ядром, если static, то установка выполняется администратором.
Настройка
Для настройки таблицы маршрутизации будем использовать команду ip route. Добавим временный статический маршрут 192.168.22.0/24 через шлюз 192.168.168.254.
ip route add 192.168.22.0/24 via 192.168.168.254
ВАЖНО! При выполнении такой команды добавиться временный статический маршрут, после перезагрузки системы он сотрется.
Для проверки необходимо проверить, проходит ли пакет из сети 192.168.22.0. Для этого будем использовать ip route get.
ip route get 192.168.22.30
Как говорилось выше, после перезагрузки Linux все эти добавленные адреса сотрутся. Для того, чтобы данные не стирались, необходимо записать их в файле.
post-up route add -net 192.168.22.0 netmask 255.255.255.0 gw 192.168.168.254
pre-down route del -net 192.168.22.0 netmask 255.255.255.0 gw 192.168.168.254
- post-up — запустить команду после включения интерфейса.
- pre-down — запустить команду перед отключением интерфейса.
- net — задает целевую сеть
- netmask — сетевая маска.
- gw — шлюз.
Не так сложно, как могло показаться. После всей выполненной работы присоединенные маршруты будут работать даже после перезагрузки операционной системы Линукс.
Рассмотрим еще несколько примеров.
Изменяем статический маршрут:
ip route change 192.168.22.0/24 via 192.168.168.254
ip route del 192.168.22.0/24
ЗАКЛЮЧЕНИЕ
Подобная работа написана для краткого рассмотрения функционирования маршрутизации в Линукс, как происходит настройка маршрутизации, а также для чего она необходима.
Источник
Настройка маршрутизации в Linux
Правила маршрутизации определяют, куда отправлять IP-пакеты. Данные маршрутизации хранятся в одной из таблиц ядра. Вести таблицы маршрутизации можно статически или динамически. Статический маршрут — это маршрут, который задается явно с помощью команды route. Динамическая маршрутизация выполняется процессом-демоном (routed или gated), который ведет и модифицирует таблицу маршрутизации на основе сообщений от других компьютеров сети. Для выполнения динамической маршрутизации разработаны специальные протоколы: RIP, OSPF, IGRP, EGP, BGP и т. д. Динамическая маршрутизация необходима в том случае, если у вас сложная, постоянно меняющаяся структура сети и одна и та же машина может быть доступна по различным интерфейсам (например, через разные Ethernet или SLIP интерфейсы). Маршруты, заданные статически, обычно не меняются, даже если используется динамическая маршрутизация. Для персонального компьютера, подключаемого к локальной сети, в большинстве ситуаций бывает достаточно статической маршрутизации командой route. Прежде чем пытаться настраивать маршруты, просмотрите таблицу маршрутизации ядра с помощью команды netstat -n -r. Вы должны увидеть что-то вроде следующего
Destination Gateway Genmask Flags MSS Window irtt Iface
192.168.254.0 0.0.0.0 255.255.255.0 U 0 0 0 eth1
192.168.254.0 0.0.0.0 255.255.255.0 U 0 0 0 eth0
169.254.0.0 0.0.0.0 255.255.0.0 U 0 0 0 eth1
0.0.0.0 192.168.254.1 0.0.0.0 UG 0 0 0 eth0
0.0.0.0 192.168.254.1 0.0.0.0 UG 0 0 0 eth1
Если таблица пуста, то вы увидите только заголовки столбцов. Тогда надо использовать route. С помощью команды route можно добавить или удалить один (за один раз) статический маршрут. Вот ее формат:
route -f операция -тип адресат шлюз интерфейс
Здесь аргумент операция может принимать одно из двух значений: add (маршрут добавляется) или delete (маршрут удаляется). Аргумент адресат может быть IP-адресом машины, IP-адресом сети или ключевым словом default . Аргумент шлюз — это IP-адрес компьютера, на который следует пересылать пакет (этот компьютер должен иметь прямую связь с вашим компьютером). Команда
route -f
удаляет из таблицы данные обо всех шлюзах. Необязательный аргумент тип принимает значения net или host. В первом случае в поле адресата указывается адрес сети, а во втором — адрес конкретного компьютера
(хоста).
Как правило, бывает необходимо настроить маршрутизацию по упоминавшимся выше трем интерфейсам:
* локальный интерфейс (lo),
* интерфейс для платы Ethetnet (eth0),
* интерфейс для последовательного порта (PPP или SLIP).
Локальный интерфейс поддерживает сеть с IP-номером 127.0.0.1. Поэтому для маршрутизации пакетов с адресом 127. используется команда:
route add -net 127.0.0.1 lo
Если у вас для связи с локальной сетью используется одна плата Ethernet, и все машины находятся в этой сети (сетевая маска 255.255.255.0), то для настройки маршрутизации достаточно вызвать:
route add -net 192.168.36.0 netmask 255.255.255.0 eth0
Если же вы имеете насколько интерфейсов, то вам надо определиться с сетевой маской и вызвать команду route для каждого интерфейса. Поскольку очень часто IP-пакеты с вашего компьютера могут отправляться не в одну единственную сеть, а в разные сети (например, при просмотре разных сайтов в Интернете), то в принципе надо было бы задать очень много маршрутов. Очевидно, что сделать это было бы очень сложно, точнее просто невозможно. Поэтому решение проблемы маршрутизации пакетов перекладывают на плечи специальных компьютеров — маршрутизаторов, а на обычных компьютерах задают маршрут по умолчанию, который используется для отправки всех пакетов, не указанных явно в таблице маршрутизации. С помощью маршрута по умолчанию вы говорите ядру «а все остальное отправляй туда». Маршрут по умолчанию настраивается следующей командой:
route add default gw 192.168.1.1 eth0
Опция gw указывает программе route, что следующий аргумент — это IP-адрес или имя маршрутизатора, на который надо отправлять все пакеты, соответствующие этой строке таблицы маршрутизации. Вот немного теории с сайта linuxcenter.ru
А теперь пример из жизни Имеются следующие интерфейсы /etc/network/interfaces
auto lo
iface lo inet loopback
auto eth0
iface eth0 inet static
address 192.168.17.8
hwaddress ether 00:E0:4C:A2:C4:48
netmask 255.255.255.0
broadcast 192.168.17.255
auto eth1
iface eth1 inet static
address 192.168.254.2
netmask 255.255.255.0
gateway 192.168.254.1
broadcast 192.168.254.255
Интерфейс eth0 это связь с локальной сетью состоящей из 20 подсетей 192.168.1.х-192.168.20.х
Интерфейс eth1 это связь с ADSL модемом с выходом в интернет. Так большинство запросов идут в Инет на этом интерфейсе прописываем шлюз (gateway 192.168.254.1) данный параметр указывает в системе шлюз по-умолчанию, обращаю внимание, что шлюз надо прописывать только на одном интерфейсе, иначе в системе появятся 2 маршрута по умолчанию и естно будет затупление в работе. С интернетом разобрались.
Но требуется еще просматривать ресурсы локальной сети для этого надо выполнить вот эти команды
route add -net 192.168.1.0 netmask 255.255.255.0 gw 192.168.17.254 eth0
route add -net 192.168.12.0 netmask 255.255.255.0 gw 192.168.17.254 eth0
route add -net 192.168.21.0 netmask 255.255.255.0 gw 192.168.17.254 eth0
На этом примере маршрутизируются 3 подсети
Все эти команды и многие другие можно прописать в файлк
/etc/network/interfaces в итоге получится следующее:
auto lo
iface lo inet loopback
auto eth0
iface eth0 inet static
address 192.168.17.8
hwaddress ether 00:E0:4C:A2:C4:48
netmask 255.255.255.0
broadcast 192.168.17.255
up route add -net 192.168.1.0 netmask 255.255.255.0 gw 192.168.17.254 eth0
up route add -net 192.168.12.0 netmask 255.255.255.0 gw 192.168.17.254 eth0
up route add -net 192.168.21.0 netmask 255.255.255.0 gw 192.168.17.254 eth0
auto eth1
iface eth1 inet static
address 192.168.254.2
netmask 255.255.255.0
gateway 192.168.254.1
broadcast 192.168.254.255
Ну вот и все по аналогии настраиваются любое кол-во маршрутов и сетевых интерфейсов
Дополнение 1.
hwaddress ether 00:E0:4C:A2:C4:48
так легко можно изменить MAC, не забываем после редактирования файла делать рестарт
sudo /etc/init.d/networking restart
Дополнение 2.
Следует отметить, что:
1) Для того, чтобы просмотреть таблицу маршрутов достаточно запуска команды route без параметров или route -n, если в сети нет DNS.
2) Маска может быть записана проще, в виде /x, где x — число единичных битов, например:
route add -net 192.168.36.0/24 eth0
вместо
route add -net 192.168.36.0 netmask 255.255.255.0 eth0
Настройки сети размещаются в файле /etc/network/interfaces. При подключение к Inet через VPN (ppp0. ), необходимо заменять маршрут по умолчанию на ppp0. А проще указать в файле /etc/ppp/options следующее:
тогда маршрут заменяется сам и при отключении восстанавливается.
Дополнение 3.
Есть прога, серверная часть которой стоит во внутренней сети, например Radmin Server, чтобы к нему подключиться клиентская прога (Radmin Viewer) запрашивает соединение по порту 4799 (например). Все работает внутри локальной сети. Есть шлюз (с внешним IP), через который обеспечивает доступ в и-нет всех компов внутренней сети. Теперь вопрос, как настроить шлюз, чтобы при обращении из вне клиентсокой частью к IP шлюза по порту 4799, он пробрасывал этот запрос дальше, например на 192.168.0.2 по томуже порту?
Для этого есть команда iptables:
iptables -t nat -D PREROUTING -i -s -p tcp —dport 4899 -j DNAT —to-destination 192.168.0.2:4899
Если ограничивать входящие IP не требуется, то опцию -s можно опустить.
Пример:
iptables -t nat -D PREROUTING -i vlan1 -s 213.87.34.20/24 -p tcp —dport 4899 -j DNAT —to-destination 192.168.128.24:4899
iptables -t nat -A PREROUTING -i eth0 -p udp —dport 3658 -j DNAT —to-destination 192.168.0.2:3658
Источник
Наш рецепт отказоустойчивого Linux-роутера
В высоконагруженных проектах всегда повышенные требования к избыточности и надежности. Одним из важнейших звеньев инфраструктуры является маршрутизатор, потому что от его устойчивости зависит доступность сети в целом. Именно на таких узлах мы используем одну из схем реализации отказоустойчивого виртуального роутера на базе GNU/Linux с использованием iproute2, NetGWM, keepalived, ISC DHCPD, PowerDNS. Как мы всё это настраиваем, читайте в этой статье.
Компоненты
В идеальной схеме отказоустойчивого роутера мы резервируем все элементы, которые могут привести к недоступности сети, то есть:
- каналы связи,
- коммутаторы,
- маршрутизаторы.
В общем виде схема (на уровне L2) выглядит так:
Как видно из схемы, нам нужны 2 коммутатора с поддержкой 802.1Q VLAN. Оператор 1 коммутируется в Коммутатор 1 и ему выделяется отдельный VLAN (например, 110). Оператор 2 коммутируется в Коммутатор 2, в другой VLAN (например, 120). Отдельный VLAN (в нашем случае — 200), выделяется под локальную сеть. Между коммутаторами организуется транк, и транком же линкуем оба маршрутизатора, которые и будут «сердцем» нашего виртуального роутера (схема router-on-a-stick).
Такая компоновка позволяет оставлять работоспособной сеть при выходе из строя любого компонента: роутера, коммутатора или оператора.
Стек базовых компонентов, которые мы используем в работе роутеров:
- Ubuntu Linux;
- NetGWM — утилита приоритезации основного шлюза в решении. Это наша Open Source-разработка, о которой мы готовим отдельную статью (пока предлагаю ознакомиться с базовой документацией) [Обновлено 08.08.2017: статья опубликована как «Настройка основного и двух резервных операторов на Linux-роутере с NetGWM»];
- iproute2 — для создания нескольких таблиц маршрутизации;
- keepalived — для реализации протокола VRRP в Linux;
- ISC DHCPD — как горизонтально масштабируемый DHCP-сервер;
- PowerDNS — как DNS-сервер для локальной сети.
Маршрутизаторы настраиваются примерно одинаково, за исключением конфигурации IP-адресов и keepalived.
Настройка интерфейсов
Настраиваем VLAN. Конфигурация /etc/network/interfaces будет выглядеть примерно так:
- настраиваем blackhole — хорошая практика для того, чтобы локальные пакеты не улетали по маршруту по умолчанию в сторону провайдера;
- net.ipv4.conf.$IFACE.rp_filter=0 — необходим для корректной работы multi-wan;
- для каждого провайдера настраиваем отдельную таблицу маршрутизации с единственным маршрутом по умолчанию.
Настроим маркинг пакетов для направления в определенные таблицы — добавим в iptables правила:
И настроим правила маршрутизации для промаркированных пакетов — мы это делаем вызовом скрипта iprules.sh при выполнении ifup lo (смотри выше в /etc/network/interfaces ). Внутри скрипта:
Эти таблицы маршрутизации необходимо объявить в /etc/iproute2/rt_tables :
Балансировщик основного шлюза
Настроим NetGWM — утилиту для приоритезации основного шлюза. Она будет устанавливать маршрут по умолчанию, выбирая операторов в соответствии с двумя правилами: а) установленным нами приоритетом, б) статусом оператора (жив или нет).
Чтобы установить NetGWM, можно воспользоваться исходниками на GitHub или нашим репозиторием для Ubuntu. Второй способ в случае Ubuntu 14.04 LTS выглядит так:
Укажем в конфиге /etc/netgwm/netgwm.yml , что у нас 2 оператора, маршруты по умолчанию для каждого из них, приоритезацию и настройки для контроля доступности:
Обратите внимание на имена oper1 и oper2 — это названия таблиц маршрутизации из /etc/iproute2/ip_tables . Рестартнем сервис netgwm , чтобы он начал управлять шлюзом по умолчанию для системы:
Настройка keepalived
Keepalived — реализация протокола VRRP для Linux. Этот протокол позволяет реализовать схему с отказоустойчивой маршрутизацией, создавая виртуальный IP, который будет использоваться в качестве маршрута по умолчанию для обслуживаемой сети. Виртуальный IP автоматически передается резервному серверу при выходе из строя основного сервера.
На этом этапе мы определяемся, что Маршрутизатор 2 будет играть роль Backup, а Маршрутизатор 1 — роль Master. Настраиваем keepalived, изменяя конфигурационный файл /etc/keepalived/keepalived.conf :
Так как наш отказоустойчивый роутер — многокомпонентный, мы решили использовать режим, в котором переключение keepalived режимов Backup → Master происходит только в случае отказа Master-сервера. За это как раз отвечает параметр nopreempt .
Настройка ISC DHCPD
ISC DHCPD был выбран нами, так как позволяет масштабировать DHCP на несколько серверов. Он прост в конфигурировании и хорошо зарекомендовал себя на практике. Кроме того, нам понравилось, что разработчики этого DHCP-сервера придумали изящное решение для организации реплики между серверами. Для основного и второстепенного серверов выделяются разные пулы адресов и на запросы отвечает сервер, который успел сделать это первым, выдавая адрес из своего пула. При этом база арендованных IP синхронизируется. В случае, если один из серверов отказывает, второй как ни в чем не бывало продолжает выдачу адресов из своего пула. При возврате отказавшего сервера он начинает выдачу из своего пула, при этом не возникает коллизий.
Правим конфиг /etc/dhcp/dhcpd.conf :
Нам понадобится сгенерировать ключ update_key , с помощью которого мы будем обновлять зону mynet . Сгенерируем его и выведем на экран:
Скопируйте сгенерированный ключ и вставьте в конфигурационный файл вместо слова КЛЮЧ.
Настройка PowerDNS
В качестве DNS-сервера мы предпочли PowerDNS, так как он имеет возможность хранить зоны в СУБД MySQL, которую удобно реплицировать между первым и вторым сервером. Кроме того, PoweDNS — это производительное решение, хорошо функционирующее в высоконагруженном роутере.
Настройку PowerDNS начнем с подготовки базы данных.
Теперь нужно настроить PowerDNS и научить его работать с БД. Для этого требуется установить пакет pdns-backend-mysql и изменить конфиг /etc/powerdns/pdns.conf :
На этом базовая конфигурация PowerDNS закончена. Нам же ещё потребуется настроить рекурсор — обработчик рекурсивных DNS-запросов, который позволяет значительно повысить производительность DNS-сервера. Правим файл /etc/powerdns/recursor.conf :
В файл forward_zones вносим зоны intranet, которые обслуживают соседние серверы:
По окончании настройки перезапускаем сервисы pdns и pdns-recursor .
После запуска настраиваем реплику MySQL между серверами.
Заключение
Мы используем данное решение не только в чистом виде. В большинстве случаев оно усложняется добавлением туннелей VTun, OpenVPN или IPSec через основного и резервного оператора связи и динамической маршрутизацией, которая реализуется с помощью Quagga. Поэтому схему, предложенную в статье, предлагаю воспринимать как фундамент для создания более сложных решений.
Будем рады, если вы зададите свои вопросы в комментариях или укажете на места в схеме, которые можно улучшить. И, конечно, подписывайтесь на наш хаб, чтобы не пропускать новые полезные материалы! )
Источник