Кто разработал ядро linux

Кто и зачем разрабатывает Linux

GNU/Linux — сложная система, включающая тысячи различных пакетов, от самых распространённых, таких, как утилиты GNU, X.org, графические среды GNOME и KDE, до специфичных для одного из дистрибутивов. Команды разработчиков каждого проекта отличаются численностью, подходом к работе, используемыми инструментами и методами планирования работ. При этом ядро Linux занимает особое место среди всех прочих приложений. От него зависит возможность работы системы GNU/Linux на различных аппаратных платформах и степень поддержки различных устройств. Поэтому характеристики процесса его разработки могут, в степени, служить индикатором для всей системы GNU/Linux.

Исследование LF охватывает трехлетний период разработки ядра (от версии 2.6.11 до версии 2.6.24) и фокусируется на таких характеристиках, как частота релизов и изменений, размер исходных текстов ядра, и самое главное, позволяет получить представление о том, кто же всё-таки разрабатывает ядро Linux.

Статистика показывает, что, в среднем, каждый новый релиз ядра выходит раз в 2,5 — 3 месяца (60 — 110 дней). В первую очередь это связано с выбранной в 2005 г. моделью разработки, направленной на сведение к минимуму длительности промежутков между разработкой новых функций, появлением поддержки новых устройств и включением их в ядро; а также сводящей к минимуму потребность создателей дистрибутивов в модификациях ядра.

При этом число изменений (патчей), вносимых в ядро, имеет тенденцию к росту. Сводя воедино эти две характеристики, можно отметить, что, в среднем, в ядро вносится 2,83 патча в час, при этом, в строках кода каждый день в ядро добавляется свыше 3 тыс. строк, более 1,4 тыс. строк модифицируется.


Расхожее в некоторых кругах представление о Linux как о системе, разрабатываемой любителями, неверно

Число разработчиков, принявших участие в выпуске версии 2.6.24, более чем в два раза превысило этот показатель для версии 2.6.11 и составило 1057 человек.

Компании, которые наиболее активно осуществляют доработку ядра Linux

Название компании Количество изменений % от общего числа изменений
Частные пользователи 11,594 13.9%
Название не определено 10,803 12.9%
Red Hat 9,351 11.2%
Novell 7,385 8.9%
IBM 6,952 8.3%
Intel 3,388 4.1%
Linux Foundation 2,160 2.6%
Consultant 2,055 2.5%
SGI 1,649 2.0%
MIPS Technologies 1,341 1.6%
Oracle 1,122 1.3%
MontaVista 1,010 1.2%
Google 965 1.1%
Linutronix 817 1.0%
HP 765 0.9%
NetApp 764 0.9%
SWsoft 762 0.9%
Renesas Technology 759 0.9%
Freescale 730 0.9%
Astaro 715 0.9%
Academia 656 0.8%
Cisco 442 0.5%
Simtec 437 0.5%
Linux Networx 434 0.5%
QLogic 398 0.5%
Fujitsu 389 0.5%
Broadcom 385 0.5%
Analog Devices 358 0.4%
Mandriva 329 0.4%
Mellanox 294 0.4%
Snapgear 285 0.3%

Источник: Linux Foundation

При этом, однако, всего 10 ведущих разработчиков совместно внесли почти 15% изменений, а 30 ведущих разработчиков — 30%. Это, однако, не значит, что расхожее в некоторых кругах представление о Linux как о системе, разрабатываемой любителями, верно. Несмотря на то, что далеко не у всех компаний, занимающихся свободным ПО, есть необходимость вносить изменения в ядро, число компаний, участвующих в его разработке, растёт. Четыре крупнейших ядра — Red Hat, Novell, IBM и Intel — оплатили более 32% внесённых за время исследования изменений, а суммарный процент изменений в ядро, внесённых разработчиками, работающими на компании, составил более 70%.

При этом среди компаний, участвующих в разработке ядра, выделяется несколько групп по основной цели участия в разработке. Это группа компаний, включающая IBM, Intel, HP, SGI, MIPS и других, которая ориентируется, в основном, на поддержку работы Linux на собственном оборудовании. Дистрибьюторы, такие, как Red Hat, Novell, MontaVista, имеют целью добавление в ядро возможностей, на которые существует спрос среди пользователей, и которые усиливают конкурентоспособность дистрибутивов как конечных продуктов. Такие компании, как Sony, Nokia, Samsung, работают над ядром для улучшения работы систем на базе ядра Linux в собственных устройствах.

Таким образом, из исследования Linux Foundation можно сделать выводы о том, что ядро Linux является беспрецедентным примером успешного сотрудничества различных по размеру и производимой продукции компаний и индивидуальных разработчиков, считают исследователи. Количество этих разработчиков и распределение их вклада в разработку может служить, в некотором смысле, гарантией стабильности и независимости разработки. Это наглядно демонстрирует преимущества как открытой модели разработки в целом, так и гарантий, предоставляемых разработчикам и конечным пользователям самой концепцией свободного ПО, закреплённой в лицензии GNU GPL.

Читайте также:  Linux терминал тонкий клиент

Источник

Ядро Linux. Версии ядра Linux

Обновл. 18 Июн 2021 |

Как вы наверняка знаете, всё началось с того, что в 1991 году программист Линус Торвальдс решил создать свою собственную операционную систему, начав с самого главного компонента — её ядра — связующего «мостика» между программами и непосредственно аппаратной частью компьютера. В этой статье мы поговорим о том, что представляет собой ядро Linux с точки зрения обычного пользователя и какие существуют версии ядра дистрибутивов Linux.

Что такое ядро ОС? Типы ядер

Ядро — это своего рода главная программа, являющаяся основной частью операционной системы. Оно выступает в роли посредника между устройствами компьютера (процессором, видеокартой, оперативной памятью и т.д.) и его программным обеспечением, абстрагируя от обычных программ и пользователей сложную, низкоуровневую работу с «железом» компьютера, предоставляя взамен простой, понятный и удобный в использовании интерфейс. Для этого в код ядра включены драйверы устройств, которые могут как загружаться в память вместе с ядром ОС, так и подключаться по мере возникновения потребности в ресурсах необходимого устройства.

Как правило, большинство ядер ОС делятся на три типа:

Микроядро

Микроядро — это ядро, состоящее из нескольких подгружаемых в память по мере надобности независимых модулей, выполняющихся в отдельных адресных пространствах. По сути, в таком варианте исполнения оно не сильно отличается от обычных прикладных программ. К достоинствам данного ядра можно отнести теоретически большую надежность в сравнении с другими архитектурами (в действительности же не всё так радужно и гладко) и его модульность (легкость в подключении дополнительных частей ядра). К минусам микроядерной архитектуры относится то, что ядро, построенное по такой схеме, получается очень медленным (ведь ему нужно постоянно переключаться между отдельными частями).

небольшие требования к используемой памяти;

аппаратное обеспечение сильнее абстрагировано от системы;

аппаратное обеспечение может медленнее реагировать, поскольку драйверы находятся в пользовательском пространстве;

процессы не могут получить доступ к другим процессам без ожидания.

Монолитное ядро

Монолитное ядро — это полная противоположность микроядра, т.к. в памяти компьютера всегда находится весь (или почти весь) код ядра, вследствие чего скорость его работы выше в сравнении с микроядром. Монолитные ядра, как правило, лучше справляются с операциями доступа к оборудованию и многозадачностью, потому что, если программе нужно получить информацию из памяти или другого запущенного процесса, у нее есть прямая линия для доступа к ней, и программе не нужно ждать в очереди, чтобы сделать что-то. Однако такой подход может вызвать серьезные проблемы, потому что, чем больше процессов выполняется на уровне ядра, тем больше вероятность, что в случае непредвиденного поведения они создадут общий сбой вашей системы.

практически прямой доступ программ к оборудованию;

процессам проще взаимодействовать друг с другом;

если ваше устройство поддерживается ядром, никаких дополнительных установок ПО не потребуется;

процессы реагируют быстрее, потому что не требуется ожидания в очереди за процессорным временем.

большой размер ядра;

больший размер занимаемой памяти;

проблемы с безопасностью, т.к. все части работают в пространстве ядра.

Гибридное ядро

Гибридное ядро — это ядро, сочетающее в себе элементы как монолитной, так и микроядерной архитектур. У таких ядер есть возможность выбирать, какие части будут работать в пользовательском пространстве (например, драйверы устройств и система ввода-вывода файловой системы), а какие — в пространстве ядра (вызовы межпроцессного (IPC) и серверного взаимодействий). Но этот подход имеет и некоторые проблемы, унаследованные от микроядерной архитектуры (особенно, по части быстродействия).

разработчик может выбрать, какие программы будут работать в пользовательском пространстве, а какие — в пространстве ядра;

меньший размер в сравнении с монолитным ядром;

гибче в отличие от других ядер.

может страдать от пониженной производительности (как и микроядро);

работа драйверов устройств, как правило, сильнее зависит от производителей оборудования.

Ядро Linux хоть и относится к монолитным ядрам, но оно также заимствует и некоторые идеи из микроядерной архитектуры, что означает, что вся операционная система работает в пространстве ядра, а драйверы устройств (в виде модулей) могут быть легко загружены (или выгружены) прямо во время работы операционной системы.

Читайте также:  Windows python gtk install

Где находится ядро Linux?

Каждый раз во время запуска (или перезапуска) системы первым компонентом, который загружается в память компьютера, является ядро Linux.

В системах Debian/Ubuntu файлы присутствующих в системе ядер расположены в каталоге /boot и именуются в виде vmlinuz-[версия_ядра] (выполнив в терминале команду uname-r , мы получим информацию о текущей версии установленного ядра):

В папке /boot вы также найдете и другие очень важные файлы:

img-[версия_ядра] — используется в качестве RAM-диска, в который распаковывается и с которого загружается ядро;

map-[версия_ядра] — используется для управления памятью до полной загрузки ядра;

config-[версия_ядра] — сообщает ядру, какие параметры и модули следует загрузить в образ ядра при его компиляции.

Когда Линус Торвальдс только начинал разрабатывать свое ядро, оно носило простое название — linux. С появлением технологии виртуальной памяти к ядру добавилась приставка vm (сокр. от «virtual memory»). Со временем ядро настолько разрослось, что к нему стали применять сжатие, об этом нам говорит буква z (от «zlib compression») в слове vmlinuz.

Примечание: Также для сжатия ядра часто применяются алгоритмы LZMA или bzip2, а сами ядра именуются zImage.

Модули ядра Linux

Что, если б в Windows уже содержались все доступные драйверы устройств, и вам просто нужно было задействовать некоторые из них? В этом, по сути, и заключен принцип загружаемых модулей ядра Linux (сокр. «LKM» от англ. «Loadable Kernel Module»). Они должны обеспечивать взаимодействие ядра со всем вашим оборудованием, и при этом не занимать всю доступную память.

Модули обычно расширяют базовые возможности ядра, связанные с различной работой устройств, файловых систем и системных вызовов. Они, как правило, имеют расширение .ko и обычно хранятся в каталоге /lib/modules:

Благодаря модульной структуре, вы можете легко настроить ядро под себя, установив необходимые модули с помощью menuconfig или отредактировав файл /boot/config, или вы можете загружать и выгружать модули «на лету» с помощью команды modprobe .

В некоторых дистрибутивах, таких как Ubuntu, доступны модули сторонних производителей или с закрытым исходным кодом. Разработчики программного обеспечения (например, NVIDIA, AMD и др.) не предоставляют исходный код, а скорее создают свои собственные модули в виде предварительно скомпилированных .ko-файлов. Некоторые разработчики Linux считают, что такие закрытые модули «портят» своим присутствием ядро, предоставляя несвободное программное обеспечение, и не включают их в свои дистрибутивы.

Версии ядра дистрибутивов Linux

Stable

Stable — это последняя доступная стабильная версия ядра Linux, предназначенная для широкого круга использования. По умолчанию, в большинстве дистрибутивов Linux применяется именно stable-версия ядра. Она регулярно обновляется, и к ней довольно часто выпускаются новые патчи.

LTS (сокр. от «Long-Term Support») — это версия ядра с длительным сроком поддержки, которая считается более стабильной в сравнении с обычной версией ядра, т.к. при её разработке программисты стараются не экспериментировать с различными нововведениями. Однако из-за этого, LTS-версии ядра могут не иметь некоторых функций ядер более свежих релизов, а также содержать старые версии драйверов, несовместимых с более новым оборудованием. Жизненный цикл LTS-ядра, обычно, составляет 5 лет для настольных компьютеров и серверов (раньше для настольных компьютеров поддержка осуществлялась на протяжении 3 лет). Для сравнения, обычные релизы ядра имеют поддержку всего 9 месяцев с момента выпуска.

Несмотря на то, что исправления безопасности внедряются в LTS-версию так же часто, как и в обычную, она, тем не менее, не дает 100% гарантии отсутствия каких-либо ошибок. Правда, шанс того, что с LTS-версией ядра Linux возникнут какие-то проблемы, немного меньше по сравнению с обычной версией ядра Linux, и поэтому многие предприятия отдают предпочтение именно LTS-релизам.

Примечание: По данным компании Canonical, примерно 95% всех установок Ubuntu являются LTS-релизами.

Hardened

Hardened — это усиленная различными обновлениями безопасности stable-версия ядра Linux. Она умеет блокировать потенциально опасные операции, обеспечивая тем самым эффективную защиту от эксплойтов, нацеленных на использование уязвимостей ядра. Данная версия ядра не так популярна, как другие, из-за того, что несколько медленнее их. Hardened-ядро убивает любой процесс, который покажется ему потенциально опасным. Кроме этого, он не отображает PID процессов, и, следовательно, вы не сможете напрямую обратиться к запущенному исполняемому файлу. Также некоторые программы и функции могут не работать с hardened-ядром.

Читайте также:  Лучший просмотр изображений для windows 10

Zen — версия ядра Linux, ориентированная на повышение производительности и отзывчивости системы. Также говорят, что это лучшее ядро Linux для игр. Zen имеет низкую задержку и высокочастотный планировщик.

Установка/Обновление ядра Linux

В Linux есть исходное ядро, которое разработал Линус Торвальдс, а затем уже дополняли и дополняют другие разработчики и организации вместе с Линусом Торвальдсом. Расположено исходное ядро на сайте kernel.org.

Все дистрибутивы Linux (Debian, Ubuntu, Manjaro, CentOS и др.), которые начали появляться после публикации исходного ядра, стали вносить свои изменения и дополнения, формируя, таким образом, свой вариант исходного ядра Linux. Все Linux-дистрибутивы имеют в своей основе исходное ядро из kernel.org, но уже с внесенными в него соответствующими правками.

Примечание: Ядра разных дистрибутивов не являются взаимозаменяемыми. Теоретически, можно «подкинуть», например, ядро из Debian в Ubuntu. И система даже заработает (ведь Ubuntu произошла от Debian), но в 99% случаев начнут появляться разные глюки и баги.

Соответственно, из этого можно сделать следующие выводы:

Если вы хотите установить «чистое», оригинальное ядро Linux, то вам нужно скачать его с kernel.org, затем сконфигурировать на свое усмотрение и наслаждаться.

Если вам нужно ядро Linux с правками под какой-то конкретный дистрибутив (например, Debian или Manjaro), то вам нужно скачать ядро из репозитория конкретного дистрибутива с помощью менеджера пакетов.

Зачем тогда нужен kernel.org? Дело в том, что сначала свежая версия исходного ядра появляется на kernel.org, а затем уже «расходится» по репозиториям остальных дистрибутивов.

Есть 2 способа установки/обновления ядра Linux:

Обновление ядра Linux через менеджер пакетов.

На этом уроке мы рассмотрим обновление ядра Linux через менеджер пакетов, а на следующем — самостоятельную установку и конфигурирование ядра Linux.

Обновление ядра Linux через менеджер пакетов

Обычно, вместе с обновлением системы происходит и обновление ядра. Но если вы по каким-либо причинам хотите произвести установку/обновление непосредственно только ядра Linux, то ниже мы рассмотрим данный процесс для нескольких дистрибутивов Linux.

Linux Mint (Debian/Ubuntu)

Для начала сверим текущую установленную версию ядра:

Далее выполним поиск доступных для установки ядер (сгенерированный список может быть очень длинным, поэтому, чтобы хоть как-то ограничить вывод и сделать его постраничным, применим фильтр | more ):

$ sudo apt-cache search linux-image | more

Мой выбор пал на ядро linux-image-4.15.0-1004-oem. Чтобы его установить, нужно выполнить команду:

$ sudo apt-get install linux-image-4.15.0-1004-oem

Останется только перезагрузить систему и убедиться, что новое ядро успешно установилось:

Manjaro (Arch Linux)

В Manjaro используется свой менеджер пакетов — pacman, поэтому его команды будут немного отличаться от команд в других дистрибутивах. Чтобы вывести список доступных для установки ядер, необходимо выполнить:

$ sudo pacman –S linux

В рамке обведен список ядер, которые мы можем установить. Я выбрал пункт №5 (linux510), нажав соответствующую кнопку на цифровой клавиатуре. После этого запустился процесс скачивания необходимых пакетов. Когда всё будет готово, перезагружаем систему и радуемся новому ядру:

Установка ядра Zen (Liquorix)

Liquorix — это отдельный проект ядра, собранный из исходников zen-ядра, но с использованием лучшей конфигурации для повышения производительности системы.

Debian

Скачиваем скрипт, который добавит в систему нужные репозитории:

$ curl ‘https://liquorix.net/add-liquorix-repo.sh’ | sudo bash

После чего выполняем всего одну команду, устанавливающую пакеты с новым ядром:

$ sudo apt-get install linux-image-liquorix-amd64 linux-headers-liquorix-amd64

Ubuntu

Установка в Ubuntu происходит практически аналогичным образом. Сначала добавляем репозитории zen-ядра (liquorix):

sudo add-apt-repository ppa:damentz/liquorix && sudo apt-get update

После чего выполняем уже знакомую по прошлому разу команду:

sudo apt-get install linux-image-liquorix-amd64 linux-headers-liquorix-amd64

И теперь перезагружаем систему. Готово!

Manjaro

Сначала установим помощник установки пакетов — yay:

$ git clone https://aur.archlinux.org/yay.git

Далее установим необходимые утилиты:

$ sudo pacman –S base-devel

Заходим в каталог yay и производим сборку пакета:

$ cd yay
$ makepkg -si

После этого переходим непосредственно к установке zen-ядра:

$ yay -S linux-zen-git

Стоит отметить, что этот процесс может занять довольно большой отрезок времени. По его окончанию, перезагружаем систему и радуемся новому ядру.

Поделиться в социальных сетях:

Управление памятью в Linux. Физическая и Виртуальная память

Источник

Оцените статью