- Вся история Linux. Часть I: с чего все началось
- Эпоха «свободного рынка»
- Приход коммерции и рождение Unix
- Назад — к истокам свободного ПО
- Рождение Linux и первых дистрибутивов
- Национальная библиотека им. Н. Э. Баумана Bauman National Library
- Персональные инструменты
- Linux (ядро)
- Содержание
- Историческая справка
- Краткая история Unix
- Краткая история Linux
- Переход от Unix к Linux
- Понятие ядра операционной системы Linux.
- Устройство компонентов ядра ОС Linux
- Файловая подсистема
- Подсистема управления запросами
- Подсистема ввода/вывода
- Особенности архитектуры
- Выполнение в режиме ядра
- Примечания
- Литература
Вся история Linux. Часть I: с чего все началось
В этом году ядру Linux исполняется 27 лет. ОС на его базе используют многие корпорации, государственные, исследовательские учреждения и дата-центры по всему миру.
За более чем четверть века вышло немало статей (в том числе и на Хабре), рассказывающих о разных отрезках истории Linux. В этой серии материалов мы решили выделить наиболее значимые и интересные факты, связанные с этой операционной системой.
Начнем с разработок, которые предшествовали Linux, и истории появления первой версии ядра.
Эпоха «свободного рынка»
Появление Linux считается одним из важнейших событий в истории открытого ПО. Рождение этой операционной системы во многом обязано идеям и инструментам, которые формировались и «зрели» десятилетиями в среде разработчиков. Поэтому для начала обратимся к истокам «опенсорсного движения».
На заре 50-х большая часть программного обеспечения в США создавалась сотрудниками университетов и лабораторий и распространялась без каких-либо ограничений. Это делалось с целью упрощения обмена знаниями в научной среде. Первым опенсорсным решением того периода считается система A-2, написанная для ЭВМ UNIVAC Remington Rand в 1953 году.
В те же годы сформировалась первая группа разработчиков свободного ПО — SHARE. Они работали по модели «совместного однорангового производства». Результатом труда этой группы ближе к концу 50-х стала одноименная ОС.
Эта система (и другие продукты SHARE) пользовалась популярностью у производителей компьютерного оборудования. Благодаря политике открытости они могли предложить клиентам не только аппаратное, но и программное обеспечение без дополнительных затрат.
Приход коммерции и рождение Unix
В 1959 году компания Applied Data Research (ADR) получила заказ от организации RCA — написать программу для автозаполнения блок-схем. Разработчики выполнили работу, но не сошлись с RCA в цене. Чтобы не «выбрасывать» готовый продукт, в ADR переделали решение для платформы IBM 1401 и начали самостоятельно его реализовывать. Однако продажи шли не очень хорошо, так как многие пользователи ждали бесплатную альтернативу решению ADR, которую планировали в IBM.
В ADR не могли допустить выпуск бесплатного продукта с аналогичной функциональностью. Поэтому разработчик Мартин Гетц (Martin Goetz) из ADR подал патент на программу и в 1968 году первым в истории США получил его. С этого момента принято отсчитывать эпоху коммерциализации в индустрии разработки — из «бонуса» к оборудованию ПО превратилось в самостоятельный продукт.
Приблизительно в то же время небольшая команда программистов из Bell Labs начала работу над операционной системой для мини-компьютера PDP-7 — Unix. Unix создавали в качестве альтернативы другой ОС — Multics.
Последняя была слишком сложной и работала только на платформах GE-600 и Honeywell 6000. Переписанная на языке СИ Unix должна была стать портативной и более простой в использовании (во многом благодаря иерархической файловой системе с единым корневым каталогом).
В 50-х холдинг AT&T, в состав которого на тот момент входила Bell Labs, подписал соглашение с правительством США, запрещающее корпорации продавать программное обеспечение. По этой причине первые пользователи Unix — научные организации — получали исходный код ОС бесплатно.
AT&T отдалилась от концепции свободного распространения ПО в начале 80-х. В результате вынужденного разделения корпорации на несколько компаний запрет на продажу ПО перестал действовать, и холдинг прекратил бесплатное распространение Unix. Разработчикам грозили исками за несанкционированный обмен исходным кодом. Угрозы не были беспочвенными — с 1980 года компьютерные программы стали объектом авторского права в США.
Не всех разработчиков устраивали условия, которые диктовали в AT&T. Поисками альтернативного решения занялась группа энтузиастов из Калифорнийского университета в Беркли. В 70-х учебное заведение получило лицензию от AT&T, и энтузиасты начали создавать на его основе новый дистрибутив, который впоследствии стал Unix Berkeley Software Distribution, или BSD.
Открытая Unix-подобная система возымела успех, на что сразу обратили внимание в AT&T. Компания подала в суд, и авторам BSD пришлось удалить и заменить весь задействованный исходный код Unix. Это немного замедлило распространение Berkeley Software Distribution в те годы. Последняя версия системы вышла в 1994 году, но сам факт появления свободной и открытой ОС стал важной вехой в истории опенсорсных проектов.
/ Flickr / Christopher Michel / CC BY / Фото обрезано
Назад — к истокам свободного ПО
В конце 70-х сотрудники Массачусетского технологического института написали драйвер для принтера, установленного в одной из аудиторий. Когда бумага застревала и создавалась очередь из заданий на печать, пользователи получали уведомление с просьбой устранить проблему. Позже в отделе появился новый принтер, для которого сотрудники захотели добавить такую функцию. Но для этого нужен был исходный код первого драйвера. Штатный программист Ричард Мэттью Столлман (Richard M. Stallman) запросил его у коллег, но получил отказ — выяснилось, что это конфиденциальная информация.
Этот незначительный эпизод, возможно, стал одним из судьбоносных в истории свободного ПО. Столлман негодовал из-за сложившегося положения вещей. Его не устраивали ограничения, накладываемые на обмен исходным кодом в ИТ-среде. Поэтому Столлман решил создать открытую операционную систему и позволить энтузиастам свободно вносить в нее изменения.
В сентябре 1983 года он объявил о создании проекта GNU — GNU’s Not UNIX («GNU не Unix»). В его основе лежал манифест, который послужил и базисом для лицензии на свободное программное обеспечение — GNU General Public License (GPL). Этот шаг стал началом активного движения за открытое ПО.
Несколько лет спустя профессор Амстердамского свободного университета Эндрю Таненбаум (Andrew S. Tanenbaum) в качестве учебного пособия разработал Unix-подобную систему Minix. Он хотел сделать ее максимально доступной для студентов. Издатель его книги, к которой прилагалась ОС, настаивал хотя бы на номинальной плате за работу с системой. Эндрю и издатель пришли к компромиссу по цене лицензии в $69. В начале 90-х Minix завоевала популярность среди разработчиков. И ей было суждено стать основой для разработки Linux.
/ Flickr / Christopher Michel / CC BY
Рождение Linux и первых дистрибутивов
В 1991 году молодой программист из Хельсинкского университета Линус Торвальдс осваивал Minix. Его эксперименты с ОС переросли в работу над совершенно новым ядром. 25 августа Линус устроил открытый опрос группы пользователей Minix о том, что их не устраивает в этой ОС, и анонсировал разработку новой операционной системы. В августовском письме есть несколько важных тезисов о будущей ОС:
- система будет бесплатной;
- система будет похожа на Minix, но исходный код будет абсолютно другим;
- система не будет «большой и профессиональной, как GNU».
25 августа принято считать днем рождения Linux. Сам Линус ведет отсчет от другой даты — 17 сентября. Именно в этот день он загрузил первый релиз Linux (0.01) на FTP-сервер и отправил электронное письмо людям, проявившим интерес к его анонсу и опросу. В исходном коде первого релиза сохранилось слово «Freaks». Так Торвальдс планировал назвать свое ядро (комбинация слов «free», «freak» и Unix). Администратору FTP-сервера не понравилось название, и он переименовал проект в Linux.
Далее последовала череда обновлений. В октябре того же года была выпущена версия ядра 0.02, а в декабре — 0.11. Изначально Linux распространялся без лицензии GPL. Это означало, что разработчики могли пользоваться ядром, модифицировать его, но не имели права перепродавать результаты своих трудов. Начиная с февраля 1992 года, все коммерческие ограничения были сняты — с релизом версии 0.12 Торвальдс изменил лицензию на GNU GPL v2. Этот шаг Линус позже назвал одним из определяющих факторов успеха Linux.
Популярность Linux в среде разработчиков Minix росла. Некоторое время обсуждения велись в фиде comp.os.minix сети Usenet. В начале 92-го создатель Minix Эндрю Таненбаум запустил в сообществе спор об архитектуре ядер, заявив, что «Linux устарел». Причина, по его мнению, заключалась в монолитном ядре ОС, которое по ряду параметров уступает микроядру Minix. Еще одна претензия Таненбаума касалась «привязки» Linux к линейке процессоров x86, которая, по прогнозам профессора, должна была кануть в небытие в ближайшее время. В полемику вступил сам Линус и пользователи обеих ОС. В результате спора сообщество разделилось на два лагеря, а у приверженцев Linux появился свой фид — comp.os.linux.
Сообщество занималось расширением функциональности базовой версии — разрабатывались первые драйверы, файловая система. Самые ранние версии Linux умещались на двух дискетах и состояли из загрузочного диска с ядром и корневого диска, который устанавливал файловую систему и несколько базовых программ из инструментария GNU.
Постепенно сообщество начало разрабатывать первые дистрибутивы на базе Linux. Большинство ранних версий создавались энтузиастами, а не компаниями.
Первый дистрибутив — MCC Interim Linux — был создан на основе версии 0.12 в феврале 1992 года. Его автор — программист из Компьютерного центра университета Манчестера — назвал разработку «экспериментом» с целью устранить некоторые недостатки в процедуре установки ядра и добавить ряд функций.
Вскоре после этого число пользовательских дистрибутивов значительно возросло. Многие из них остались локальными проектами, «прожившими» не более пяти лет, например, Softlanding Linux System (SLS). Однако были и дистрибутивы, которым удалось не только «закрепиться» на рынке, но и во многом повлиять на дальнейшее развитие опенсорсных проектов. В 1993 году состоялся релиз двух дистрибутивов — Slackware и Debian, — которые дали старт серьезным переменам в индустрии свободного ПО.
Debian создал Иан Мердок (Ian Murdock) при поддержке Free Software Foundation Столлмана. Он задумывался как «изящная» альтернатива SLS. Debian поддерживается по сей день и является одной из самых популярных разработок на базе Linux. На его основе, в свою очередь, был создан ряд других важных для истории ядра дистрибутивов — например, Ubuntu.
Что касается Slackware, это — еще один ранний и успешный проект на базе Linux. Его первая версия вышла в 1993 году. По некоторым оценкам, через два года на долю Slackware приходилось уже около 80% установок Linux. И десятилетия спустя дистрибутив оставался популярным среди разработчиков.
В 1992-м в Германии была основана компания SUSE (аббревиатура от Software- und System-Entwicklung — разработка программного обеспечения и систем). Она первой начала выпускать продукты на базе Linux для бизнес-клиентов. Первым дистрибутивом, с которым стали работать SUSE, как раз был Slackware, адаптированный для немецкоязычных пользователей.
Именно с этого момента начинается эпоха коммерциализации в истории Linux, о которой мы поговорим в следующей статье.
Источник
Национальная библиотека им. Н. Э. Баумана
Bauman National Library
Персональные инструменты
Linux (ядро)
Разработчик | Линус Торвальдс и сторонние разработчики |
---|---|
Написана на | C и Ассемблер [1] |
Линейка ОС | Unix-подобная |
Дата первого релиза | 0.01 (17 September 1991 года ; 30 years ago ( 1991-09-17 ) ) |
Доступно в | Русский |
Ядро (тип) | Монолитное ядро |
Лицензия | GNU GPL, version 2 [2] plus various optional freely redistributable (proprietary) binary blobs [3] |
Официальный веб-сайт | kernel .org |
Содержание
Историческая справка
Краткая история Unix
Хронология разработки ядра Linux очень обширна, однако точно прослеживаются истоки его создания, которые ведут к UNIX. В 1969 году Кен Томпсон из исследовательской группы Bell Laboratories совместно с Деннисом Ритчи на передовом микро-компьютере PDP-7 разработал ядро многозадачной, многопользовательской операционной системы UNICS ( позже переименованной в UNIX-TP). В момент создания ядра UNIX-TP Ритчи находился под влиянием своего прошлого проекта — ОС MULTICS, несмотря на наличие достаточно инновационных и передовых идей, таких как: строго сегментированная модель данных, сегментно-страничная виртуальная память, динамическое связывание, переконфигурация всей системы «на ходу», иерархическая файловая система, впервые реализованный подход с использованием стеков для каждого вычислительного процесса внутри системы ядра и др; проект был закрыт ввиду сложной архитектуры ОС, а также из-за недостатков, связанных с распределением памяти файлов, больших по размеру чем установленный системный лимит. Стоит также заметить, что вся операционная система, включая сложный компилятор языка PL/I, пользовательские команды и дополнительные библиотеки, состояла из примерно полутора тысяч исходных файлов, каждый из которых содержал примерно по 200 строк кода. В скомпилированном виде весь этот код занимал около 4,5 Мегабайт, что было огромным размером по тем временам. Компиляторы Multics в основном оптимизировали код по размеру, а не по эффективности использования центрального процессора, что было обосновано стремлением к экономии памяти в многопользовательской системе.
Несмотря на неудачу своего предшественника, UNIX вобрал в себя концепцию MULTICS и был детально проработан. Первые две версии ОС были написаны на ассемблере, однако третья и четвертая версии использовали язык, разработанный Ритчи — С [4] , архитектура третьей версии использовала встроенный компилятор языка, а четвертая представляла собой полностью переписанное на СИ системное ядро. С приходом пятой версии UNIX был полностью переписан на язык СИ. Изначально создателем он был задуман как язык необходимый в написании операционных систем. Это переписывание разрешено команде UNIX TM с целью перехода на более мощную аппаратную часть — PDP-11/45 и 11/70 компьютеры. С 1974 года UNIX стал распространяться среди университетов и академических учреждений. С 1975 года началось появление новых версий, разработанных за пределами Bell Labs, и рост популярности системы.
В 1980 году компанией AT&T был разработан пакет коммерческих лицензий на все дистрибутивы UNIX, и сведение всех версий в одну: UNIX System V. Университет Калифорнии, Беркли продолжал разрабатывать свою собственную версию Unix под названием BSD. Многие из важнейших разработок в UNIX изначально пришли из BSD, к примеру, включение TCP/IP в основную версию UNIX. Поскольку основная часть системы поставлялась в исходных текстах, написанных на языке С, опытным программистам не требовалось документации, чтобы разобраться в архитектуре UNIX. C ростом популярности микропроцессоров другие компании переносили эту операционную систему на другие платформы, но простота и ясность операционной системы искушали многих на ее расширение и последующую модификацию, в результате чего появилось много разновидностей базовой системы.
Не желая терять инициативу, AT&T в 1982 году объединила несколько существовавших версий UNIX и создала версию под названием SYSTEM |||. В отличие от редакций, предназначавшихся, в первую очередь, для внутреннего использования и не получивших дальнейшего развития, SYSTEM ||| была создана для распространения за пределами Bell Labs и AT&T и положила начало новой ветви UNIX , которая и сегодня жива и развивается.
Краткая история Linux
В 1991 году в Хельсинки, Финляндии, Линус Торвальдс начал работу над проектом, который был, по его словам, «просто для удовольствия». Этот проект в конечном счете стал ядром Linux. Он никогда не был предназначен для чего-то особенного, просто инструмент, который позволил бы студенту получить доступ к UNIX-серверам в соседнем университете. Он написал его специально для железа, на котором он работал на тот момент, и оно не зависело от операционной системы. Linux разработана «с нуля» для процессора Intel i386, сегодня она перенесена на огромный ряд других аппаратных платформ, включая серверы Alpha фирмы DEC.
Переход от Unix к Linux
Linux был разработан в попытке создать бесплатную альтернативу коммерческим UNIX-средам. Его история начинается в 1991 или даже в 1983 гг., когда был создан проект GNU, чьей исходной целью было предоставить бесплатную альтернативу UNIX. Linux работает на гораздо большем количестве платформ, например на Intel®/AMD x86. Большинство ОС UNIX способны работать только на одной платформе.У Linux и UNIX общие исторические корни, но есть и серьезные отличия. Много инструментов, утилит, и бесплатных приложений, являющихся стандартными для Linux, первоначально задумывались как бесплатная альтернатива программам для UNIX. Linux часто предоставляет поддержку множества опций и приложений, заимствуя лучшую или наиболее популярную функциональность из UNIX. Администратору или разработчику, который привык работать с Linux, система UNIX может показаться не очень удобной для использования. С другой стороны, фундамент UNIX-подобной операционной системы (инструменты, файловая система, интерфейсы API) достаточно стандартизирован.
Понятие ядра операционной системы Linux.
Ядро является сердцем любой операционной системы, обеспечивая базовую функциональность операционной системы:
- создает процессы и управляет ими
- распределяет и обеспечивает доступ к файлам, а также к периферийным устройствам
Взаимодействие прикладных задач с ядром происходит посредством стандартного интерфейса системных вызовов. Интерфейс системных вызовов представляет собой набор услуг ядра и определяет формат запросов на услуги. Процесс запрашивает услугу посредством системного вызова определенной процедуры ядра, внешне похожего на вызов обычной библиотечной функции . Ядро от имени процесса выполняет запрос и возвращает процессу необходимые данные.
Исходный код ядра коммерческих дистрибутивов UNIX является собственностью их разработчиков и не распространяется за пределы компании. Полностью противоположная ситуация с Linux. Процедуры для компиляции и исправления ядер и драйверов весьма различны. Для Linux и других операционных систем с открытым исходным кодом патч может быть выпущен в виде исходного кода, и конечный пользователь может установить, проверить и даже модифицировать его. Эти патчи обычно проверены не так тщательно как патчи от поставщиков коммерческих ОС UNIX. Поскольку нет полного списка приложений и сред, которые должны быть оттестированы для корректной работы на Linux, Linux-разработчики зависят от конечных пользователей и других разработчиков, которые будут отлавливать ошибки.
Поставщики коммерческих UNIX-дистрибутивов выпускают ядра только в виде исполняемого кода. Некоторые релизы являются монолитными, тогда как другие позволяют обновить только какой-нибудь конкретный модуль ядра. Но в любом случае этот релиз предоставляется только в форме исполняемого кода. Если необходимо обновление, администратор должен ждать, пока производитель выпустит патч в бинарном коде, однако его может утешить то, что производитель выполнит тщательную проверку своего патча на обратную совместимость.
Все коммерческие версии UNIX в некоторой степени эволюционировали до модульного ядра. Драйверы и отдельные особенности ОС доступны как отдельные компоненты и могут быть по необходимости загружены или выгружены из ядра. Но открытая модульная архитектура Linux гораздо гибче. Однако гибкость и адаптируемость Linux означают и постоянное изменение. Исходный код Linux постоянно меняется, и, по прихоти разработчика, может поменяться API. Когда модуль или драйвер написан для коммерческой версии UNIX, он проработает гораздо дольше, чем тот же драйвер для Linux.
Устройство компонентов ядра ОС Linux
Ядро состоит из:
- Файловая система
- Подсистема управления процессами и памятью
- Подсистема ввода / вывода
Файловая подсистема
Файловая подсистема обеспечивает унифицированный интерфейс доступа к данным, расположенным на дисковых накопителях, а также к периферийным устройствам. Одни и те же функции open(), read(), write() могут использоваться как при чтении или записи данных на диск, так и при выводе текста на принтер или в терминал. Файловая подсистема контролирует права доступа к файлу, выполняет операции размещения и удаления файла. Поскольку большинство прикладных функций выполняется через интерфейс файловой системы, права доступа к файлам определяют привилегии пользователя в системе. Файловая подсистема обеспечивает маршрутизацию запросов периферийным устройствам, соответствующим модулям подсистемы ввода/вывода.
Подсистема управления запросами
Запущенная на выполнение программа порождает в системе один или более процессов ( задач ). Подсистема управления процессами контролирует:
- Создание и удаление процессов
- Распределение системных ресурсов ( памяти, вычислительных ресурсов ) между процессами
- Синхронизацию процессов
- Межпроцессорное взаимодействие
Известно, что в общем случае число активных процессоров превышает число процессоров компьютера, но в каждый конкретный момент времени на каждом процессоре может выполняться только один процесс. Операционная система управляет доступом процессоров к вычислительным ресурсам, создавая ощущение одновременного выполнения нескольких задач. Специальная задача ядра, называемая распорядителем или планировщиком процессов, разрешает конфликты между процессами в конкуренции за системные ресурсы ( процессор, память, периферийные устройства ). Планировщик запускает процесс на выполнение, следя за тем, чтобы процесс монопольно не захватил разделяемые системные ресурсы. Процесс освобождает процессор, ожидая длительной операции ввода/вывода, или по прошествии периода времени. В этом случае планировщик выбирает следующий процесс с наивысшим приоритетом и запускает его на выполнение. Модуль управления памятью обеспечивает размещение оперативной памяти для прикладных задач. Оперативная память является дорогостоящим ресурсом, и, как правило, она редко «простаивает». В случае, если для всех процессов недостаточно памяти, ядро перемещает части процесса или несколько процессов во вторичную память ( как правило, для этого выделена некоторая область жесткого диска ), освобождая ресурсы для действующих процессов. Все современные системы реализуют виртуальную память: процесс выполняется в собственном логическом адресном пространстве, которое может значительно превышать доступную физическую память. Управление виртуальной памятью процесса также входит в перечень задач модуля управления памятью. Модуль межпроцессного взаимодействия.отвечает за уведомление процессов о событиях с помощью сигналов и обеспечивает возможность передачи данных между различными процессами.
Подсистема ввода/вывода
Подсистема ввода/вывода выполняет запросы файловой подсистемы и подсистемы управления процессами для доступа к периферийным устройствам ( дискам, терминалам, а ранее и к магнитным лентам и др. ). Она обеспечивает необходимую буферизацию данных и взаимодействует с драйверами устройств — специальными модулями ядра, непосредственно обслуживающими внешние устройства.
Особенности архитектуры
Ядро Linux поддерживает многие унаследованные от UNIX особенности, такие как:
- многозадачность
- виртуальную память
- динамические библиотеки
- отложенную загрузку
- производительную систему управления памятью
- современные сетевые протоколы
На сегодняшний день Linux — монолитное ядро с поддержкой загружаемых модулей. Драйверы устройств и расширения ядра обычно запускаются в 0-м кольце защиты, с полным доступом к оборудованию. В отличие от обычных монолитных ядер, драйверы устройств легко собираются в виде модулей и загружаются или выгружаются во время работы системы, эта особенность также является унаследованной от первого предшественника — ОС Multics. То, что архитектура Linux не является микроядерной, вызвало обширнейшие споры между Линусом Торвальдсом и Эндрю Таненбаумом в конференции.
Выполнение в режиме ядра
Существуют всего три события, при которых выполнение процесса переходит в режим ядра:
- аппаратные прерывания
- особые ситуации
- системные вызовы
Во всех случаях ядро Linux получает управление и вызывает соответствующую системную процедуру для обработки события. Непосредственно перед вызовом ядро сохраняет состояние системы, а именно состояние прерванного процесса в системном стеке. После завершения обработки, состояние процесса восстанавливается и процесс возвращается в исходный режим выполнения. Чаще всего это режим задачи, например, когда прерывание возникло, когда процесс уже находился в режиме ядра, после обработки события он останется в том же состоянии. Стоит разграничить особые ситуации и прерывания. Аппаратные прерывания генерируются периферией при наступлении исключительных событий ( например, завершение печати или поступление данных на последовательный вход ввода ) и имеют асинхронный характер, поскольку невозможно в тот или иной момент сказать, когда система нам пробросит исключение. Часто, эти прерывания не связаны с текущим процессом, а вызваны внешними событиями. Именно поэтому, обработка прерываний происходит в системном контексте, при этом недопустим доступ к адресному пространству процесса. По этой причине обработка ситуаций не должна блокироваться, поскольку это вызовет блокирование выполнения независимого процесса Системные вызовы позволяют процессам воспользоваться базовыми услугами ядра. Интерфейс системных вызовов определяет ограниченный набор точек входа в ядро системы, обращение к которым изменяет режим выполнения процесса и позволяет выполнять привилегированные функции ядра. Стандартная библиотека C, позволяющая использовать системные функции как обычные процедуры, на самом деле содержит заглушки, обеспечивающие фактическую реализацию вызова соответствующей точки входа ядра. Эта реализация практически не зависит от аппаратной части системы. Например, для систем на базе процессоров Intel используются шлюзы. Имеются два типа шлюзов: шлюзы ловушек и шлюзы вызовов. Для осуществления вызова через шлюз ловушки процесс выполняет команду прерывания, а при работе через шлюз вызова — команду межсегментного вызова. Выполнение системного вызова происходит в режиме ядра, но в контексте процесса, сделавшего системный вызов. Таким образом, открыт доступ к адресному пространству процесса и используется стек ядра процесса.
Примечания
- ↑ Balsa, Andrew D. «The linux-kernel mailing list FAQ». Tux.Org.
- ↑ Martens, China (28 July 2006). «Linux creator Torvalds still no fan of GPLv3». InfoWorld. IDG . Retrieved 15 February 2015 .
- ↑»kernel/git/stable/linux-stable.git». git.kernel.org. 16 October 2002 . Retrieved 21 August 2012 . path: root/firmware/WHENCE
- ↑Си
Литература
Робачевский, Андрей (2002). Autotools : Операционная система Unix / by Андрей Робачевский. No Starch Press. p. 528. ISBN 5-8206-0030-4.
Источник