Линукс что такое pid

Процессы в Linux

Данной теме посвящено много статей, но в Сети мало сугубо практических статей. О какой именно практике идет речь, вы узнаете прочитав эту статью. Правда, одной только практикой нам не обойтись — вдруг вы не читали всю эту серую массу теории, которую можно найти в Сети.

Термин «процесс» впервые появился при разработке операционной системы Multix и имеет несколько определений, которые используются в зависимости от контекста. Процесс — это:

  1. программа на стадии выполнения
  2. «объект», которому выделено процессорное время
  3. асинхронная работа

Для описания состояний процессов используется несколько моделей. Самая простая модель — это модель трех состояний. Модель состоит из:

  1. состояния выполнения
  2. состояния ожидания
  3. состояния готовности

Выполнение — это активное состояние, во время которого процесс обладает всеми необходимыми ему ресурсами. В этом состоянии процесс непосредственно выполняется процессором.

Ожидание — это пассивное состояние, во время которого процесс заблокирован, он не может быть выполнен, потому что ожидает какое-то событие, например, ввода данных или освобождения нужного ему устройства.

Готовность — это тоже пассивное состояние, процесс тоже заблокирован, но в отличие от состояния ожидания, он заблокирован не по внутренним причинам (ведь ожидание ввода данных — это внутренняя, «личная» проблема процесса — он может ведь и не ожидать ввода данных и свободно выполняться — никто ему не мешает), а по внешним, независящим от процесса, причинам. Когда процесс может перейти в состояние готовности? Предположим, что наш процесс выполнялся до ввода данных. До этого момента он был в состоянии выполнения, потом перешел в состояние ожидания — ему нужно подождать, пока мы введем нужную для работы процесса информацию. Затем процесс хотел уже перейти в состояние выполнения, так как все необходимые ему данные уже введены, но не тут-то было: так как он не единственный процесс в системе, пока он был в состоянии ожидания, его «место под солнцем» занято — процессор выполняет другой процесс. Тогда нашему процессу ничего не остается как перейти в состояние готовности: ждать ему нечего, а выполняться он тоже не может.

Из состояния готовности процесс может перейти только в состояние выполнения. В состоянии выполнения может находится только один процесс на один процессор. Если у вас n-процессорная машина, у вас одновременно в состоянии выполнения могут быть n процессов.

Из состояния выполнения процесс может перейти либо в состояние ожидания или состояние готовности. Почему процесс может оказаться в состоянии ожидания, мы уже знаем — ему просто нужны дополнительные данные или он ожидает освобождения какого-нибудь ресурса, например, устройства или файла. В состояние готовности процесс может перейти, если во время его выполнения, квант времени выполнения «вышел». Другими словами, в операционной системе есть специальная программа — планировщик, которая следит за тем, чтобы все процессы выполнялись отведенное им время. Например, у нас есть три процесса. Один из них находится в состоянии выполнения. Два других — в состоянии готовности. Планировщик следит за временем выполнения первого процесса, если «время вышло», планировщик переводит процесс 1 в состояние готовности, а процесс 2 — в состояние выполнения. Затем, когда, время отведенное, на выполнение процесса 2, закончится, процесс 2 перейдет в состояние готовности, а процесс 3 — в состояние выполнения.

Диаграмма модели трех состояний представлена на рисунке 1.

Читайте также:  Zabbix мониторинг сети linux

Рисунок 1. Модель трех состояний

Более сложная модель — это модель, состоящая из пяти состояний. В этой модели появилось два дополнительных состояния: рождение процесса и смерть процесса. Рождение процесса — это пассивное состояние, когда самого процесса еще нет, но уже готова структура для появления процесса. Как говорится в афоризме: «Мало найти хорошее место, надо его еще застолбить», так вот во время рождения как раз и происходит «застолбление» этого места. Смерть процесса — самого процесса уже нет, но может случиться, что его «место», то есть структура, осталась в списке процессов. Такие процессы называются зобми и о них мы еще поговорим в этой статье.

Диаграмма модели пяти состояний представлена на рисунке 2.

Рисунок 2. Модель пяти состояний

Над процессами можно производить следующие операции:

  1. Создание процесса — это переход из состояния рождения в состояние готовности
  2. Уничтожение процесса — это переход из состояния выполнения в состояние смерти
  3. Восстановление процесса — переход из состояния готовности в состояние выполнения
  4. Изменение приоритета процесса — переход из выполнения в готовность
  5. Блокирование процесса — переход в состояние ожидания из состояния выполнения
  6. Пробуждение процесса — переход из состояния ожидания в состояние готовности
  7. Запуск процесса (или его выбор) — переход из состояния готовности в состояние выполнения

Для создания процесса операционной системе нужно:

  1. Присвоить процессу имя
  2. Добавить информацию о процессе в список процессов
  3. Определить приоритет процесса
  4. Сформировать блок управления процессом
  5. Предоставить процессу нужные ему ресурсы

Подробнее о списке процессов, приоритете и обо всем остальном мы еще поговорим, а сейчас нужно сказать пару слов об иерархии процессов. Процесс не может взяться из ниоткуда: его обязательно должен запустить какой-то процесс. Процесс, запущенный другим процессом, называется дочерним (child) процессом или потомком. Процесс, который запустил процесс называется родительским (parent), родителем или просто — предком. У каждого процесса есть два атрибута — PID (Process ID) — идентификатор процесса и PPID (Parent Process ID) — идентификатор родительского процесса.

Процессы создают иерархию в виде дерева. Самым «главным» предком, то есть процессом, стоящим на вершине этого дерева, является процесс init (PID=1).

На мой взгляд, приведенной теории вполне достаточно, чтобы перейти к практике, а именно — «пощупать» все состояния процессов. Конечно, мы не рассмотрели системные вызовы fork(), exec(), exit(), kill() и многие другие, но в Сети предостаточно информации об этом. Тем более, что про эти вызовы вы можете прочитать в справочной системе Linux, введя команду man fork. Правда, там написано на всеми любимом English, так что за переводом (если он вам нужен) все-таки придется обратиться за помощью к WWW.

Для наблюдения за процессами мы будем использовать программу top.

Полный вывод программы я по понятным причинам урезал. Рассмотрим по порядку весь вывод программы. В первой строке программа сообщает текущее время, время работы системы ( 58 min), количество зарегистрированных (login) пользователей (4 users), общая средняя загрузка системы (load average).

Примечание. Общей средней загрузкой системы называется среднее число процессов, находящихся в состоянии выполнения (R) или в состоянии ожидания (D). Общая средняя загрузка измеряется каждые 1, 5 и 15 минут.

Во второй строке вывода программы top сообщается, что в списке процессов находятся 52 процесса, из них 51 спит (состояние готовности или ожидания), 1 выполняется (у меня только 1 процессор), 0 процессов зомби и 0 остановленных процессов.

В третьей-пятой строках приводится информация о загрузке процессора, использования памяти и файла подкачки. Нас данная информация не очень интересует, поэтому переходим сразу к таблице процессов.

Читайте также:  Сбился рабочий стол windows

В таблице отображается различная информация о процессе. Нас сейчас интересуют колонки PID (идентификатор процесса), USER (пользователь, запустивший процесс), STAT (состояние процесса) и COMMAND (команда, которая была введена для запуска процесса).

Колонка STAT может содержать следующие значения:

    R — процесс выполняется или готов к выполнению (состояние готовности)
  • D — процесс в «беспробудном сне» — ожидает дискового ввода/вывода
  • T — процесс остановлен (stopped) или трассируется отладчиком
  • S — процесс в состоянии ожидания (sleeping)
  • Z — процесс-зобми
  • &lt — процесс с отрицательным значением nice
  • N — процесс с положительным значением nice (о команде nice мы поговорим позже)

Давайте просмотрим, когда же процесс находится в каждом состоянии. Создайте файл process — это обыкновенный bash-сценарий

Сделайте этот файл исполнимым chmod +x ./process и запустите его ./process. Теперь перейдите на другую консоль (ALT + Fn) и введите команду ps -a | grep process. Вы увидите следующий вывод команды ps:

Данный вывод означает, что нашему процессу присвоен идентификатор процесса 4035. Теперь введите команду top -p 4035

Обратите внимание на колонку состояния нашего процесса. Она содержит значение R, которое означает, что в данный момент выполняется процесс с номером 4035.

Теперь приостановим наш процесс — состояние T. Перейдите на консоль, на которой запущен ./process и нажмите Ctrl + Z. Вы увидите сообщение Stopped.

Теперь попробуем «усыпить» наш процесс. Для этого нужно сначала «убить» его: kill 4035. Затем добавить перед циклом while в сценарии ./process строку sleep 10m, которая означает, что процесс будет спать 10 минут. После этого опять запустите команду ps -a | grep process, чтобы узнать PID процесса, а затем — команду top -p PID. Вы увидите в колонке состояния букву S, что означает, что процесс находится в состоянии ожидания или готовности — попросту говоря «спит».

Мы вплотную подошли к самому интересному — созданию процесса-зомби. Во многих статьях, посвященных процессам, пишется «зомби = не жив, не мертв». А что это означает на самом деле? При завершении процесса должна удаляться его структура из списка процессов. Иногда процесс уже завершился, но его имя еще не удалено из списка процессов. В этом случае процесс становится зомби — его уже нет, но мы его видим в таблице команды top. Такое может произойти, если процесс-потомок (дочерний процесс) завершился раньше, чем этого ожидал процесс-родитель. Сейчас мы напишем программу, порождающую зомби, который будет существовать 8 секунд. Процесс-родитель будет ожидать завершения процесса-потомка через 10 секунд, а процесс-потомок завершить через 2 секунды.

Для компиляции данной программы нам нужен компилятор gcc:

Для тех, у кого не установлен компилятор, скомпилированная программа доступна отсюда.

После того, как программа будет откомпилирована, запустите ее: ./zombie. Программа выведет следующую информацию:

Запомните последний номер и быстро переключайтесь на другую консоль. Затем введите команду top -p 1148

Мы видим, что в списке процессов появился 1 зомби (STAT=Z), который проживет аж 10 секунд.

Мы уже рассмотрели все возможные состояния процессов. Осталось только рассмотреть команду для повышения приоритета процесса — это команда nice. Повысить приоритет команды может только пользователь root, указав соответствующий коэффициент понижения. Для увеличения приоритета нужно указать отрицательный коэффициент, например, nice -5 process

Источник

Как узнать PID процесса в Linux

Каждый процесс в операционной системе имеет свой уникальный идентификатор, по которому можно получить информацию об этом процессе, а также отправить ему управляющий сигнал или завершить.

В Linux такой идентификатор называется PID, и узнать его можно несколькими способами. В этой статье мы рассмотрим, как узнать PID процесса в Linux, а также зачем это может вам понадобиться.

Читайте также:  Темы для windows 10 с изменением звука

Как узнать pid процесса Linux

Самый распространённый способ узнать PID Linux — использовать утилиту ps:

Кроме нужного нам процесса, утилита также выведет PID для grep, ведь процесс был запущен во время поиска. Чтобы его убрать, добавляем такой фильтр:

Например, узнаём PID всех процессов, имя которых содержит слово «Apache»:

2. pgrep

Если вам не нужно видеть подробную информацию о процессе, а достаточно только PID, то можно использовать утилиту pgrep:

По умолчанию утилита ищет по командной строке запуска процесса, если нужно искать только по имени процесса, то надо указать опцию -f:

3. pidof

Эта утилита ищет PID конкретного процесса по его имени. Никаких вхождений, имя процесса должно только совпадать с искомым:

С помощью опции -s можно попросить утилиту выводить только один PID:

4. pstree

Утилита pstree позволяет посмотреть список дочерних процессов для определённого процесса, также их pid-идентификаторы. Например, посмотрим дерево процессов Apache:

Каким процессом занят файл Linux

Выше мы рассмотрели, как получить PID процесса Linux по имени, а теперь давайте узнаем PID по файлу, который использует процесс. Например, мы хотим удалить какой-либо файл, а система нам сообщает, что он используется другим процессом.

С помощью утилиты lsof можно посмотреть, какие процессы используют директорию или файл в данный момент. Например, откроем аудио-файл в плеере totem, а затем посмотрим, какой процесс использует её файл:

В начале строки мы видим название программы, а дальше идёт её PID. Есть ещё одна утилита, которая позволяет выполнить подобную задачу — это fuser:

Здесь будет выведен только файл и PID процесса. После PID идёт одна буква, которая указывает, что делает этот процесс с файлом или папкой:

  • c — текущая директория;
  • r — корневая директория;
  • f — файл открыт для чтения или записи;
  • e — файл выполняется как программа;
  • m — файл подключен в качестве библиотеки.

Кто использовал файл в Linux

Узнать процесс, который сейчас занимает файл, достаточно просто. Но как узнать, какой процесс обращается к файлу не надолго, например, выполняет его как программу или читает оттуда данные? Эта задача уже труднее, но вполне решаема с помощью подсистемы ядра auditd. В CentOS набор программ для работы с этой подсистемой поставляется по умолчанию, в Ubuntu же его придётся установить командой:

Теперь создаём правило для мониторинга. Например, отследим, кто запускает утилиту who:

Здесь -w — адрес файла, который мы будем отслеживать, —p — действие, которое нужно отслеживать, —k — произвольное имя для правила. В качестве действия могут использоваться такие варианты:

Теперь выполним один раз who и посмотрим, что происходит в логе с помощью команды ausearch:

Здесь в секции SYSCALL есть PID процесса, под которым была запущена программа, а также PPID — программа, которая запустила нашу who. Копируем этот PID и смотрим информацию о нём с помощью ps:

Становиться понятно, что это bash.

Какой процесс использует порт в Linux

Иногда необходимо узнать PID Linux-программы, которая использует сетевой порт, например 80. Для этого можно использовать утилиту ss:

Мы видим, что это несколько процессов Apache. Использовав опцию dport, можно узнать, какой процесс отправляет данные на указанный порт:

Выводы

В этой статье мы рассмотрели, как узнать PID процесса в Linux по различным условиям: имени или файлу. Как видите, всё достаточно просто, и в считанные минуты можно можно понять, что происходит с вашей операционной системой, и какой процесс за это отвечает.

Источник

Оцените статью