Linux что могут модули ядра

Kernel module (Русский)

Модули ядра — это отдельные кусочки кода, которые могут быть загружены и выгружены из ядра по мере необходимости. Они расширяют функциональность ядра без необходимости перезагрузки системы.

Contents

Обзор

Чтобы создать модуль ядра, вы можете прочитать The Linux Kernel Module Programming Guide. Модуль можно сконфигурировать как вкомпилированный, а можно как загружаемый. Чтобы иметь возможность динамически загружать или выгружать модуль, его необходимо сконфигурировать как загружаемый модуль в настройке ядра (в этом случае строка, относящаяся к модулю должна быть отмечена буквой M ).

Модули хранятся в /usr/lib/modules/kernel_release . Чтобы узнать текущую версию вашего ядра, используйте команду uname -r .

Получение информации

Чтобы узнать, какие модули ядра загружены в настоящий момент:

Чтобы показать информацию о модуле:

Чтобы вывести список опций, с которыми загружен модуль:

Чтобы отобразить настройки для всех модулей:

Чтобы отобразить настройки для отдельного модуля:

Чтобы узнать зависимости модуля (или его псевдонима), включая сам модуль:

Автоматическое управление модулями

Сегодня все необходимые загрузки модулей делаются автоматически с помощью udev, поэтому если вам не нужно загружать какие-либо модули, не входящие в стандартное ядро, вам не придётся прописывать модули, требующиеся для загрузки в каком-либо конфигурационном файле. Однако, бывают случаи, когда вам необходимо загружать свой модуль в процессе загрузки или наоборот не загружать какой-то стандартный модуль, чтобы ваш компьютер правильно функционировал.

Чтобы дополнительные модули ядра загружались автоматически в процессе загрузки, создаются статические списки в конфигурационных файлах в директории /etc/modules-load.d/ . Каждый конфигурационный файл называется по схеме /etc/modules-load.d/

.conf . Эти конфигурационные файлы содержат список названий модулей ядра, которые необходимо грузить, разделённых переносом строки. Пустые строки и строки, в которых первым непробельным символом является # или ; , игнорируются.

Смотрите modules-load.d(5) для дополнительной информации.

Управление модулями вручную

Управление модулями ядра производится с помощью утилит, предоставляемых пакетом kmod . Вы можете использовать эти утилиты вручную.

Загрузка модуля из другого места (для тех модулей, которых нет в /lib/modules/$(uname -r)/ ):

Альтернативный вариант выгрузки модуля:

Настройка параметров модуля

Чтобы передать параметр модулю ядра, вы можете воспользоваться конфигурационным файлом в modprobe или использовать командную строку ядра.

С помощью файлов в /etc/modprobe.d/

Файлы в директории /etc/modprobe.d/ можно использовать для передачи настроек модуля в udev, который через modprobe управляет загрузкой модулей во время загрузки системы. Конфигурационные файлы в этой директории могут иметь любое имя, оканчивающееся расширением .conf . Синтаксис следующий:

С помощью командной строки ядра

Если модуль вкомпилирован в ядро, вы также можете передать параметры модулю с помощью командной строки ядра. Для всех стандартных загрузчиков, подойдёт следующий синтаксис:

Просто добавьте это в загрузчике в строку с ядром, как описано в параметрах ядра.

Создание псевдонимов

Псевдонимы (алиасы) — это альтернативные названия для модуля. Например: alias my-mod really_long_modulename означает, что вы можете использовать modprobe my-mod вместо modprobe really_long_modulename . Вы также можете использовать звёздочки в стиле shell, то есть alias my-mod* really_long_modulename будет иметь тот же эффект, что и modprobe my-mod-something . Создайте алиас:

У некоторых модулей есть алиасы, которые используются для их автоматической загрузки, когда они потребуются определённой программе. Отключение этих алиасов может предотвратить их автоматическую загрузку, при этом остаётся возможность из загрузки вручную.

Запрет загрузки

В терминах модулей ядра blacklisting означает механизм, предотвращающий загрузку какого-то модуля. Это может понадобиться, например если вам не нужна работа какого-то оборудования или если загрузка данного модуля вызывает проблемы: например, могут быть два модуля ядра, которые пытаются управлять одним и тем же оборудованием, и их совместная загрузка приводит к конфликту.

Некоторые модули загружаются как часть initramfs. Команда mkinitcpio -M напечатает все автоматически обнаруженные модули: для предотвращения initramfs от загрузки каких-то из этих модулей, занесите их в чёрный список в /etc/modprobe.d/modprobe.conf . Команда mkinitcpio -v отобразит все модули, которые необходимы некоторым хукам (например, filesystems хук, block хук и т.д.). Не забудьте добавить этот .conf файл в секцию FILES в /etc/mkinitcpio.conf , если вы этого ещё не сделали, пересоберите initramfs после того, как вы запретили загрузку модулей, а затем перезагрузитесь.

С помощью файлов в /etc/modprobe.d/

Создайте .conf файл в /etc/modprobe.d/ и добавьте строку для каждого модуля, который вы хотите запретить, используя ключевое слово blacklist . Например, если вы хотите запретить загружать модуль pcspkr :

Можно изменить такое поведение. Команда install заставляет modprobe запускать вашу собственную команду вместо вставки модуля в ядро как обычно. Поэтому вы можете насильно сделать так, чтобы модуль никогда не загружался:

Читайте также:  Linux sed заменить первую строку

Это запретит данный модуль и все модули, зависящие от него.

С помощью командной строки ядра

Вы также можете запрещать модули из загрузчика.

Источник

Что такое ядро Linux

Ядро Linux содержит более 13 миллионов строк кода и является одним из самых крупных проектов с открытым исходным кодом в мире. Так что такое ядро Linux и для чего оно используется?

Что такое ядро Linux?

Ядро — это самый низкий уровень программного обеспечения, которое взаимодействует с аппаратными средствами компьютера. Оно отвечает за взаимодействие всех приложений, работающих в пространстве пользователя вплоть до физического оборудования. Также позволяет процессам, известным как сервисы получать информацию друг от друга с помощью системы IPC.

Виды и версии ядра

Что такое ядро Linux вы уже знаете, но какие вообще бывают виды ядер? Есть различные способы и архитектурные соображения при создании ядер с нуля. Большинство ядер могут быть одного из трех типов: монолитное ядро, микроядро, и гибрид. Ядро Linux представляет собой монолитное ядро, в то время как ядра Windows и OS X гибридные. Давайте сделаем обзор этих трех видов ядер.

Микроядро

Микроядра реализуют подход, в котором они управляют только тем, чем должны: процессором, памятью и IPC. Практически все остальное в компьютере рассматривается как аксессуары и обрабатывается в режиме пользователя. Микроядра имеют преимущество в переносимости, они могут использоваться на другом оборудовании, и даже другой операционной системе, до тех пор, пока ОС пытается получить доступ к аппаратному обеспечению совместимым образом.

Микроядра также имеют очень маленький размер и более безопасны, поскольку большинство процессов выполняются в режиме пользователя с минимальными привилегиями.

Плюсы

  • Портативность
  • Небольшой размер
  • Низкое потребление памяти
  • Безопасность

Минусы

  • Аппаратные средства доступны через драйверы
  • Аппаратные средства работают медленнее потому что драйверы работают в пользовательском режиме
  • Процессы должны ждать свою очередь чтобы получить информацию
  • Процессы не могут получить доступ к другим процессам не ожидая

Монолитное ядро

Монолитные ядра противоположны микроядрам, потому что они охватывают не только процессор, память и IPC, но и включают в себя такие вещи, как драйверы устройств, управление файловой системой, систему ввода-вывода. Монолитные ядра дают лучший доступ к оборудованию и реализуют лучшую многозадачность, потому что если программе нужно получить информацию из памяти или другого процесса, ей не придется ждать в очереди. Но это и может вызвать некоторые проблемы, потому что много вещей выполняются в режиме суперпользователя. И это может принести вред системе при неправильном поведении.

Плюсы:

  • Более прямой доступ к аппаратным средствам
  • Проще обмен данными между процессами
  • Процессы реагируют быстрее

Минусы:

  • Большой размер
  • Занимает много оперативной памяти
  • Менее безопасно

Гибридное ядро

Гибридные ядра могут выбирать с чем нужно работать в пользовательском режиме, а что в пространстве ядра. Часто драйвера устройств и файловых систем находятся в пользовательском пространстве, а IPC и системные вызовы в пространстве ядра. Это решение берет все лучшее из обоих предыдущих, но требует больше работы от производителей оборудования. Поскольку вся ответственность за драйвера теперь лежит на них.

Плюсы

  • Возможность выбора того что будет работать в пространстве ядра и пользователя
  • Меньше по размеру чем монолитное ядро
  • Более гибкое

Минусы

  • Может работать медленнее
  • Драйверы устройств выпускаются производителями

Где хранятся файлы ядра?

Где находится ядро Linux? Файлы ядра Ubuntu или любого другого Linux-дистрибутива находятся в папке /boot и называются vmlinuz-версия. Название vmlinuz походит с эпохи Unix. В шестидесятых годах ядра привыкли называть просто Unix, в 90-х годах Linux ядра тоже назывались — Linux.

Когда для облегчения многозадачности была разработана виртуальная память, перед именем файла появились буквы vm, чтобы показать что ядро поддерживает эту технологию. Некоторое время ядро называлось vmlinux, но потом образ перестал помещаться в память начальной загрузки, и был сжат. После этого последняя буква x была изменена на z, чтобы показать что использовалось сжатие zlib. Не всегда используется именно это сжатие, иногда можно встретить LZMA или BZIP2, поэтому некоторые ядра называют просто zImage.

Нумерация версии состоит из трех цифр, номер версии ядра Linux, номер вашей версии и патчи или исправления.

В паке /boot можно найти не только ядро Linux, такие файлы, как initrd.img и system.map. Initrd используется в качестве небольшого виртуального диска, который извлекает и выполняет фактический файл ядра. Файл System.map используется для управления памятью, пока еще ядро не загрузилось, а конфигурационные файлы могут указывать какие модули ядра включены в образ ядра при сборке.

Архитектура ядра Linux

Так как ядро Linux имеет монолитную структуру, оно занимает больше и намного сложнее других типов ядер. Эта конструктивная особенность привлекла много споров в первые дни Linux и до сих пор несет некоторые конструктивные недостатки присущие монолитным ядрам.

Читайте также:  Пульт с гироскопом для windows

Но чтобы обойти эти недостатки разработчики ядра Linux сделали одну вещь — модули ядра, которые могут быть загружены во время выполнения. Это значит что вы можете добавлять и удалять компоненты ядра на лету. Все может выйти за рамки добавления функциональных возможностей аппаратных средств, вы можете запускать процессы сервера, подключать виртуализацию, а также полностью заменить ядро без перезагрузки.

Представьте себе возможность установить пакет обновлений Windows без необходимости постоянных перезагрузок.

Модули ядра

Что, если бы Windows уже имела все нужные драйвера по умолчанию, а вы лишь могли включить те, которые вам нужны? Именно такой принцип реализуют модули ядра Linux. Модули ядра также известные как загружаемые модули (LKM), имеют важное значение для поддержки функционирования ядра со всеми аппаратными средствами, не расходуя всю оперативную память.

Модуль расширяет функциональные возможности базового ядра для устройств, файловых систем, системных вызовов. Загружаемые модули имеют расширение .ko и обычно хранятся в каталоге /lib/modules/. Благодаря модульной природе вы можете очень просто настроить ядро путем установки и загрузки модулей. Автоматическую загрузку или выгрузку модулей можно настроить в конфигурационных файлах или выгружать и загружать на лету, с помощью специальных команд.

Сторонние, проприетарные модули с закрытым исходным кодом доступны в некоторых дистрибутивах, таких как Ubuntu, но они не поставляются по умолчанию, и их нужно устанавливать вручную. Например, разработчики видеодрайвера NVIDIA не предоставляют исходный код, но вместо этого они собрали собственные модули в формате .ko. Хотя эти модули и кажутся свободными, они несвободны. Поэтому они и не включены во многие дистрибутивы по умолчанию. Разработчики считают что не нужно загрязнять ядро несвободным программным обеспечением.

Теперь вы ближе к ответу на вопрос что такое ядро Linux. Ядро не магия. Оно очень необходимо для работы любого компьютера. Ядро Linux отличается от OS X и Windows, поскольку оно включает в себя все драйверы и делает много вещей поддерживаемых из коробки. Теперь вы знаете немного больше о том, как работает ваше программное обеспечение и какие файлы для этого используются.

Источник

Пишем простой модуль ядра Linux

Захват Золотого Кольца-0

Linux предоставляет мощный и обширный API для приложений, но иногда его недостаточно. Для взаимодействия с оборудованием или осуществления операций с доступом к привилегированной информации в системе нужен драйвер ядра.

Модуль ядра Linux — это скомпилированный двоичный код, который вставляется непосредственно в ядро Linux, работая в кольце 0, внутреннем и наименее защищённом кольце выполнения команд в процессоре x86–64. Здесь код исполняется совершенно без всяких проверок, но зато на невероятной скорости и с доступом к любым ресурсам системы.

Не для простых смертных

Написание модуля ядра Linux — занятие не для слабонервных. Изменяя ядро, вы рискуете потерять данные. В коде ядра нет стандартной защиты, как в обычных приложениях Linux. Если сделать ошибку, то повесите всю систему.

Ситуация ухудшается тем, что проблема необязательно проявляется сразу. Если модуль вешает систему сразу после загрузки, то это наилучший сценарий сбоя. Чем больше там кода, тем выше риск бесконечных циклов и утечек памяти. Если вы неосторожны, то проблемы станут постепенно нарастать по мере работы машины. В конце концов важные структуры данных и даже буфера могут быть перезаписаны.

Можно в основном забыть традиционные парадигмы разработки приложений. Кроме загрузки и выгрузки модуля, вы будете писать код, который реагирует на системные события, а не работает по последовательному шаблону. При работе с ядром вы пишете API, а не сами приложения.

У вас также нет доступа к стандартной библиотеке. Хотя ядро предоставляет некоторые функции вроде printk (которая служит заменой printf ) и kmalloc (работает похоже на malloc ), в основном вы остаётесь наедине с железом. Вдобавок, после выгрузки модуля следует полностью почистить за собой. Здесь нет сборки мусора.

Необходимые компоненты

Прежде чем начать, следует убедиться в наличии всех необходимых инструментов для работы. Самое главное, нужна машина под Linux. Знаю, это неожиданно! Хотя подойдёт любой дистрибутив Linux, в этом примере я использую Ubuntu 16.04 LTS, так что в случае использования других дистрибутивов может понадобиться слегка изменить команды установки.

Во-вторых, нужна или отдельная физическая машина, или виртуальная машина. Лично я предпочитаю работать на виртуальной машине, но выбирайте сами. Не советую использовать свою основную машину из-за потери данных, когда сделаете ошибку. Я говорю «когда», а не «если», потому что вы обязательно подвесите машину хотя бы несколько раз в процессе. Ваши последние изменения в коде могут ещё находиться в буфере записи в момент паники ядра, так что могут повредиться и ваши исходники. Тестирование в виртуальной машине устраняет эти риски.

И наконец, нужно хотя бы немного знать C. Рабочая среда C++ слишком велика для ядра, так что необходимо писать на чистом голом C. Для взаимодействия с оборудованием не помешает и некоторое знание ассемблера.

Установка среды разработки

На Ubuntu нужно запустить:

Читайте также:  Перестала работать передняя панель для наушников windows 10

Устанавливаем самые важные инструменты разработки и заголовки ядра, необходимые для данного примера.

Примеры ниже предполагают, что вы работаете из-под обычного пользователя, а не рута, но что у вас есть привилегии sudo. Sudo необходима для загрузки модулей ядра, но мы хотим работать по возможности за пределами рута.

Начинаем

Приступим к написанию кода. Подготовим нашу среду:

Запустите любимый редактор (в моём случае это vim) и создайте файл lkm_example.c следующего содержания:

Мы сконструировали самый простой возможный модуль, рассмотрим подробнее самые важные его части:

  • В include перечислены файлы заголовков, необходимые для разработки ядра Linux.
  • В MODULE_LICENSE можно установить разные значения, в зависимости от лицензии модуля. Для просмотра полного списка запустите:
  • Мы устанавливаем init (загрузка) и exit (выгрузка) как статические функции, которые возвращают целые числа.
  • Обратите внимание на использование printk вместо printf . Также параметры printk отличаются от printf . Например, флаг KERN_INFO для объявления приоритета журналирования для конкретной строки указывается без запятой. Ядро разбирается с этими вещами внутри функции printk для экономии памяти стека.
  • В конце файла можно вызвать module_init и module_exit и указать функции загрузки и выгрузки. Это даёт возможность произвольного именования функций.
  • Впрочем, пока мы не можем скомпилировать этот файл. Нужен Makefile. Такого базового примера пока достаточно. Обратите внимание, что make очень привередлив к пробелам и табам, так что убедитесь, что используете табы вместо пробелов где положено.

    Если мы запускаем make , он должен успешно скомпилировать наш модуль. Результатом станет файл lkm_example.ko . Если выскакивают какие-то ошибки, проверьте, что кавычки в исходном коде установлены корректно, а не случайно в кодировке UTF-8.

    Теперь можно внедрить модуль и проверить его. Для этого запускаем:

    Если всё нормально, то вы ничего не увидите. Функция printk обеспечивает выдачу не в консоль, а в журнал ядра. Для просмотра нужно запустить:

    Вы должны увидеть строку “Hello, World!” с меткой времени в начале. Это значит, что наш модуль ядра загрузился и успешно сделал запись в журнал ядра. Мы можем также проверить, что модуль ещё в памяти:

    Для удаления модуля запускаем:

    Если вы снова запустите dmesg, то увидите в журнале запись “Goodbye, World!”. Можно снова запустить lsmod и убедиться, что модуль выгрузился.

    Как видите, эта процедура тестирования слегка утомительна, но её можно автоматизировать, добавив:

    в конце Makefile, а потом запустив:

    для тестирования модуля и проверки выдачи в журнал ядра без необходимости запускать отдельные команды.

    Теперь у нас есть полностью функциональный, хотя и абсолютно тривиальный модуль ядра!

    Немного интереснее

    Копнём чуть глубже. Хотя модули ядра способны выполнять все виды задач, взаимодействие с приложениями — один из самых распространённых вариантов использования.

    Поскольку приложениям запрещено просматривать память в пространстве ядра, для взаимодействия с ними приходится использовать API. Хотя технически есть несколько способов такого взаимодействия, наиболее привычный — создание файла устройства.

    Вероятно, раньше вы уже имели дело с файлами устройств. Команды с упоминанием /dev/zero , /dev/null и тому подобного взаимодействуют с устройствами “zero” и “null”, которые возвращают ожидаемые значения.

    В нашем примере мы возвращаем “Hello, World”. Хотя это не особенно полезная функция для приложений, она всё равно демонстрирует процесс взаимодействия с приложением через файл устройства.

    Вот полный листинг:

    Тестирование улучшенного примера

    Теперь наш пример делает нечто большее, чем просто вывод сообщения при загрузке и выгрузке, так что понадобится менее строгая процедура тестирования. Изменим Makefile только для загрузки модуля, без его выгрузки.

    Теперь после запуска make test вы увидите выдачу старшего номера устройства. В нашем примере его автоматически присваивает ядро. Однако этот номер нужен для создания нового устройства.

    Возьмите номер, полученный в результате выполнения make test , и используйте его для создания файла устройства, чтобы можно было установить коммуникацию с нашим модулем ядра из пространства пользователя.

    (в этом примере замените MAJOR значением, полученным в результате выполнения make test или dmesg )

    Параметр c в команде mknod говорит mknod, что нам нужно создать файл символьного устройства.

    Теперь мы можем получить содержимое с устройства:

    или даже через команду dd :

    Вы также можете получить доступ к этому файлу из приложений. Это необязательно должны быть скомпилированные приложения — даже у скриптов Python, Ruby и PHP есть доступ к этим данным.

    Когда мы закончили с устройством, удаляем его и выгружаем модуль:

    Заключение

    Надеюсь, вам понравились наши шалости в пространстве ядра. Хотя показанные примеры примитивны, эти структуры можно использовать для создания собственных модулей, выполняющих очень сложные задачи.

    Просто помните, что в пространстве ядра всё под вашу ответственность. Там для вашего кода нет поддержки или второго шанса. Если делаете проект для клиента, заранее запланируйте двойное, если не тройное время на отладку. Код ядра должен быть идеален, насколько это возможно, чтобы гарантировать цельность и надёжность систем, на которых он запускается.

    Источник

    Оцените статью