Linux cluster file system

Выбор распределенной файловой системы для Linux. Пару слов о Ceph и остальных

Существует несколько десятков файловых систем, все из них предоставляют пользовательские интерфейсы для хранения данных. Каждая из систем хороша по-своему. Однако, в наш век высоких нагрузок и петабайтов данных для обработки, оказалось довольно непросто подыскать то, что нужно, стоит лишь задуматься о распределенных данных, распределенных нагрузках, множественном монтировании rw и о прочих кластерных прелестях.

Задача: организовать распределенное файловое хранилище
— без самосборных ядер, модулей, патчей,
— с возможностью множественного монтирования в режиме rw,
— POSIX совместимость,
— отказоустойчивость,
— совместимость с уже использующимися технологиями,
— разумный overhead по I/O операциям по сравнению с локальными файловыми системами,
— простота конфигурации, обслуживания и администрирования.

В работе мы используем Proxmox и контейнерную виртуализацию OpenVZ. Это удобно, это летает, у этого решения больше плюсов, чем у аналогичных продуктов. По крайней мере для наших проектов и в наших реалиях.
Сам storage везде монтируется по FC.

OCFS2

У нас был успешный опыт использования данной файловой системы, решили сначала попробовать ее. Proxmox с недавнего времени перешел на редхатовское ядро, в нем поддержка ocfs2 выключена. Модуль в ядре есть, но на форумах openvz и proxmox не рекомендуют его задействовать. Мы попробовали и пересобрали ядро. Модуль версии 1.5.0, кластер из 4 железных машин на базе debian squeeze, proxmox 2.0beta3, ядро 2.6.32-6-pve. Для тестов использовался stress. Проблемы за несколько лет остались те же самые. Все завелось, настройка данной связки занимает полчаса от силы. Однако, под нагрузкой кластер может самопроизвольно развалиться, что ведет к тотальному kernel panic на всех серверах сразу. За сутки тестов машины перезагружались в общей сложности пять раз. Это лечится, но доводить такую систему до работоспособного состояния довольно тяжело. Пришлось также пересобирать ядро и включать ocfs2. Минус.

Хоть ядро и редхатовское, модуль по умолчанию включен, завестись мы и здесь так и не смогли. Все дело в proxmox, которые со второй версии придумали свой кластер с шахматами и поэтессами для хранения своих конфигов. Там cman, corosync и прочие пакеты из gfs2-tools, только все пересобранные специально для pve. Оснастка для gfs2, таким образом, из пакетов просто так не ставится, так как предлагает сначала снести весь proxmox, что мы сделать не могли. За три часа зависимости удалось победить, но все опять закончилось kernel panic. Попытка приспособить пакеты для proxmox для решения наших проблем успехом не увенчалась, после двух часов было принято решение отказаться от этой идеи.

Остановились пока на ней.

POSIX совместимая, высокая скорость работы, отличная масштабируемость, несколько смелых и интересных подходов в реализации.

Файловая система состоит из следующих компонентов:

1. Клиенты. Пользователи данных.
2. Сервера метаданных. Кэшируют и синхронизируют распределенные метаданные. С помощью метаданных клиент в любой промежуток времени знает, где находятся нужные ему данные. Также сервера метаданных выполняют распределение новых данных.
3. Кластер хранения объектов. Здесь в виде объектов хранятся как данные, так и метаданные.
4. Кластерные мониторы. Осуществляют мониторинг здоровья всей системы в целом.

Фактический файловый ввод/вывод происходит между клиентом и кластером хранения объектов. Таким образом, управление высокоуровневыми функциями POSIX (открытие, закрытие и переименование) осуществляется с помощью серверов метаданных, а управление обычными функциями POSIX (чтение и запись) осуществляется непосредственно через кластер хранения объектов.

Любых компонентов может быть несколько, в зависимости от стоящих перед администратором задач.

Файловая система может быть подключена как напрямую, с помощью модуля ядра, так через FUSE. С точки зрения пользователя, файловая система Ceph является прозрачной. Они просто имеют доступ к огромной системе хранения данных и не осведомлены об используемых для этого серверах метаданных, мониторах и отдельных устройствах, составляющих массивный пул системы хранения данных. Пользователи просто видят точку монтирования, в которой могут быть выполнены стандартные операции файлового ввода / вывода. С точки зрения администратора имеется возможность прозрачно расширить кластер, добавив сколько угодно необходимых компонентов, мониторов, хранилищ, серверов метаданных.

Читайте также:  Драйвера обновления windows антивирусов

Разработчики гордо называют Ceph экосистемой.

GPFS, Lustre и прочие файловые системы, а также надстройки, мы не рассматривали в этот раз, они либо очень сложны в настройке, либо не развиваются, либо не подходят по заданию.

Конфигурация и тестирование

Конфигурация стандартная, все взято из Ceph wiki. В целом файловая система оставила приятные впечатления. Собран массив 2Тб, пополам из SAS и SATA дисков (экспорт блочных устройств по FC), партиции в ext3.
Ceph storage примонтирован внутрь 12-и виртуальных машин на 4 hardware nodes, осуществляется чтение-запись со всех точек монтирования. Четвертые сутки стресс-тестов проходят нормально, I/O выдается в среднем 75 мб/с. на запись по пику.

Мы пока не рассматривали остальные функции Ceph (а их осталось еще довольно много), также есть проблемы с FUSE. Но хотя разработчики предупреждают, что система экспериментальная, что ее не стоит использовать в production, мы считаем, что если очень хочется, то можно -_-

Прошу всех заинтересованных, а также всех сочувствующих, в личку. Тема очень интересная, ищем единомышленников, чтобы обсудить возникшие проблемы и найти способы их решения.

Источник

File systems

In computing, a file system or filesystem controls how data is stored and retrieved. Without a file system, information placed in a storage medium would be one large body of data with no way to tell where one piece of information stops and the next begins. By separating the data into pieces and giving each piece a name, the information is easily isolated and identified. Taking its name from the way paper-based information systems are named, each group of data is called a «file». The structure and logic rules used to manage the groups of information and their names is called a «file system».

Individual drive partitions can be setup using one of the many different available filesystems. Each has its own advantages, disadvantages, and unique idiosyncrasies. A brief overview of supported filesystems follows; the links are to Wikipedia pages that provide much more information.

Contents

Types of file systems

The factual accuracy of this article or section is disputed.

See filesystems(5) for a general overview and Wikipedia:Comparison of file systems for a detailed feature comparison. File systems supported by the kernel are listed in /proc/filesystems .

In-tree and FUSE file systems

File system Creation command Userspace utilities Archiso [1] Kernel documentation [2] Notes
Btrfs mkfs.btrfs(8) btrfs-progs Yes btrfs.html Stability status
VFAT mkfs.fat(8) dosfstools Yes vfat.html Windows 9x file system
exFAT mkfs.exfat(8) exfatprogs Yes Native file system in Linux 5.4. [3]
mkexfatfs(8) exfat-utils No N/A (FUSE-based)
F2FS mkfs.f2fs(8) f2fs-tools Yes f2fs.html Flash-based devices
ext3 mkfs.ext3(8) e2fsprogs Yes ext3.html
ext4 mkfs.ext4(8) e2fsprogs Yes ext4.html
HFS mkfs.hfsplus(8) hfsprogs AUR No hfs.html Classic Mac OS file system
HFS+ mkfs.hfsplus(8) hfsprogs AUR No hfsplus.html macOS (8–10.12) file system
JFS mkfs.jfs(8) jfsutils Yes jfs.html
NILFS2 mkfs.nilfs2(8) nilfs-utils Yes nilfs2.html Raw flash devices, e.g. SD card
NTFS No ntfs.html Windows NT file system. Kernel’s in-built driver has very limited write support. officially supported kernels are built without CONFIG_NTFS_FS so this driver is not available.
mkfs.ntfs(8) ntfs-3g Yes N/A (FUSE-based) FUSE driver with extended capabilities.
ReiserFS mkfs.reiserfs(8) reiserfsprogs Yes
UDF mkfs.udf(8) udftools Yes udf.html
XFS mkfs.xfs(8) xfsprogs Yes
Out-of-tree file systems
File system Creation command Kernel patchset Userspace utilities Notes
APFS mkapfs(8) linux-apfs-rw-dkms-git AUR apfsprogs-git AUR macOS (10.13 and newer) file system. Read only, experimental.
Bcachefs bcachefs(8) linux-bcachefs-git AUR bcachefs-tools-git AUR
NTFS3 ntfs3-dkms AUR Paragon NTFS3 driver FAQ
Reiser4 mkfs.reiser4(8) reiser4progs AUR
ZFS zfs-linux AUR , zfs-dkms AUR zfs-utils AUR OpenZFS port

Journaling

All the above filesystems with the exception of exFAT, ext2, FAT16/32, Reiser4 (optional), Btrfs and ZFS, use journaling. Journaling provides fault-resilience by logging changes before they are committed to the filesystem. In the event of a system crash or power failure, such file systems are faster to bring back online and less likely to become corrupted. The logging takes place in a dedicated area of the filesystem.

Читайте также:  Создание сети между mac windows

Not all journaling techniques are the same. Ext3 and ext4 offer data-mode journaling, which logs both data and meta-data, as well as possibility to journal only meta-data changes. Data-mode journaling comes with a speed penalty and is not enabled by default. In the same vein, Reiser4 offers so-called «transaction models» which not only change the features it provides, but in its journaling mode. It uses a different journaling techniques: a special model called wandering logs which eliminates the need to write to the disk twice, write-anywhere—a pure copy-on-write approach (mostly equivalent to btrfs’ default but with a fundamentally different «tree» design) and a combined approach called hybrid which heuristically alternates between the two former.

The other filesystems provide ordered-mode journaling, which only logs meta-data. While all journaling will return a filesystem to a valid state after a crash, data-mode journaling offers the greatest protection against corruption and data loss. There is a compromise in system performance, however, because data-mode journaling does two write operations: first to the journal and then to the disk (which Reiser4 avoids with its «wandering logs» feature). The trade-off between system speed and data safety should be considered when choosing the filesystem type. Reiser4 is the only filesystem that by design operates on full atomicity and also provides checksums for both meta-data and inline data (operations entirely occur, or they entirely do not and does not corrupt or destroy data due to operations half-occurring) and by design is therefore much less prone to data loss than other file systems like Btrfs.

Filesystems based on copy-on-write (also known as write-anywhere), such as Reiser4, Btrfs and ZFS, have no need to use traditional journal to protect metadata, because they are never updated in-place. Although Btrfs still has a journal-like log tree, it is only used to speed-up fdatasync/fsync.

FUSE-based file systems

Stackable file systems

  • aufs — Advanced Multi-layered Unification Filesystem, a FUSE based union filesystem, a complete rewrite of Unionfs, was rejected from Linux mainline and instead OverlayFS was merged into the Linux Kernel.

http://aufs.sourceforge.net || linux-aufsAUR

  • eCryptfs — The Enterprise Cryptographic Filesystem is a package of disk encryption software for Linux. It is implemented as a POSIX-compliant filesystem-level encryption layer, aiming to offer functionality similar to that of GnuPG at the operating system level.

https://ecryptfs.org || ecryptfs-utils

  • mergerfs — a FUSE based union filesystem.

https://github.com/trapexit/mergerfs || mergerfsAUR

  • mhddfs — Multi-HDD FUSE filesystem, a FUSE based union filesystem.

http://mhddfs.uvw.ru || mhddfsAUR

  • overlayfs — OverlayFS is a filesystem service for Linux which implements a union mount for other file systems.

https://www.kernel.org/doc/html/latest/filesystems/overlayfs.html || linux

  • Unionfs — Unionfs is a filesystem service for Linux, FreeBSD and NetBSD which implements a union mount for other file systems.

https://unionfs.filesystems.org/ || not packaged? search in AUR

  • unionfs-fuse — A user space Unionfs implementation.

https://github.com/rpodgorny/unionfs-fuse || unionfs-fuse

Read-only file systems

  • EROFS — Enhanced Read-Only File System is a lightweight read-only file system, it aims to improve performance and compress storage capacity.

https://www.kernel.org/doc/html/latest/filesystems/erofs.html || erofs-utils

  • SquashFS — SquashFS is a compressed read only filesystem. SquashFS compresses files, inodes and directories, and supports block sizes up to 1 MB for greater compression.

https://github.com/plougher/squashfs-tools || squashfs-tools

Clustered file systems

  • Ceph — Unified, distributed storage system designed for excellent performance, reliability and scalability.

https://ceph.com/ || ceph

  • Glusterfs — Cluster file system capable of scaling to several peta-bytes.

https://www.gluster.org/ || glusterfs

  • IPFS — A peer-to-peer hypermedia protocol to make the web faster, safer, and more open. IPFS aims replace HTTP and build a better web for all of us. Uses blocks to store parts of a file, each network node stores only content it is interested, provides deduplication, distribution, scalable system limited only by users. (currently in alpha)

https://ipfs.io/ || go-ipfs

  • MooseFS — MooseFS is a fault tolerant, highly available and high performance scale-out network distributed file system.

https://moosefs.com || moosefs

  • OpenAFS — Open source implementation of the AFS distributed file system
Читайте также:  Netflow analyzer free linux

https://www.openafs.org || openafsAUR

  • OrangeFS — OrangeFS is a scale-out network file system designed for transparently accessing multi-server-based disk storage, in parallel. Has optimized MPI-IO support for parallel and distributed applications. Simplifies the use of parallel storage not only for Linux clients, but also for Windows, Hadoop, and WebDAV. POSIX-compatible. Part of Linux kernel since version 4.6.

https://www.orangefs.org/ || not packaged? search in AUR

  • Sheepdog — Distributed object storage system for volume and container services and manages the disks and nodes intelligently.

https://sheepdog.github.io/sheepdog/ || sheepdogAUR

  • Tahoe-LAFS — Tahoe Least-Authority Filesystem is a free and open, secure, decentralized, fault-tolerant, peer-to-peer distributed data store and distributed file system.

https://tahoe-lafs.org/ || tahoe-lafsAUR

Shared-disk file system

  • GFS2 — GFS2 allows all members of a cluster to have direct concurrent access to the same shared block storage

https://pagure.io/gfs2-utils || gfs2-utilsAUR

  • OCFS2 — The Oracle Cluster File System (version 2) is a shared disk file system developed by Oracle Corporation and released under the GNU General Public License

https://oss.oracle.com/projects/ocfs2/ || ocfs2-toolsAUR

  • VMware VMFS — VMware’s VMFS (Virtual Machine File System) is used by the company’s flagship server virtualization suite, vSphere.

https://www.vmware.com/products/vi/esx/vmfs.html || vmfs-toolsAUR

Identify existing file systems

To identify existing file systems, you can use lsblk:

An existing file system, if present, will be shown in the FSTYPE column. If mounted, it will appear in the MOUNTPOINT column.

Create a file system

File systems are usually created on a partition, inside logical containers such as LVM, RAID and dm-crypt, or on a regular file (see Wikipedia:Loop device). This section describes the partition case.

Before continuing, identify the device where the file system will be created and whether or not it is mounted. For example:

Mounted file systems must be unmounted before proceeding. In the above example an existing filesystem is on /dev/sda2 and is mounted at /mnt . It would be unmounted with:

To find just mounted file systems, see #List mounted file systems.

To create a new file system, use mkfs(8) . See #Types of file systems for the exact type, as well as userspace utilities you may wish to install for a particular file system.

For example, to create a new file system of type ext4 (common for Linux data partitions) on /dev/sda1 , run:

The new file system can now be mounted to a directory of choice.

Mount a file system

To manually mount filesystem located on a device (e.g., a partition) to a directory, use mount(8) . This example mounts /dev/sda1 to /mnt .

This attaches the filesystem on /dev/sda1 at the directory /mnt , making the contents of the filesystem visible. Any data that existed at /mnt before this action is made invisible until the device is unmounted.

fstab contains information on how devices should be automatically mounted if present. See the fstab article for more information on how to modify this behavior.

If a device is specified in /etc/fstab and only the device or mount point is given on the command line, that information will be used in mounting. For example, if /etc/fstab contains a line indicating that /dev/sda1 should be mounted to /mnt , then the following will automatically mount the device to that location:

mount contains several options, many of which depend on the file system specified. The options can be changed, either by:

  • using flags on the command line with mount
  • editing fstab
  • creating udev rules
  • compiling the kernel yourself
  • or using filesystem-specific mount scripts (located at /usr/bin/mount.* ).

See these related articles and the article of the filesystem of interest for more information.

List mounted file systems

To list all mounted file systems, use findmnt(8) :

findmnt takes a variety of arguments which can filter the output and show additional information. For example, it can take a device or mount point as an argument to show only information on what is specified:

findmnt gathers information from /etc/fstab , /etc/mtab , and /proc/self/mounts .

Источник

Оцените статью