Linux dump all memory

Получаем образ оперативной памяти


Содержание оперативной памяти является очень важной информацией при изучении предыдущих действий с машиной. Оперативная память может содержать как части самих исполняемых процессов, так и части удаленных файлов, пользовательских сессий, криптографических ключей. При современном распространении сложных систем защиты информации, основанных на криптовании восстановление их ключей становиться чуть-ли не одной из основных задач для исследования. В защищенных системах зачастую оперативная память это единственное место где могут сохраниться защитные ключи и другая временная, но очень важная информация.

Процесс получения информации, которая содержится в оперативной памяти состоит из двух этапов: изъятие содержимого оперативной памяти
и
анализ полученных во время изъятия данных.

Обращая внимание на первый этап стоит заметить, что изъятие оперативной памяти может быть выполнено с помощью ряда средств: непосредственный доступ к памяти с использованием специальных плат расширения, порта FireWire, и даже физическом изъятии запоминающего устройства оперативной памяти (потребует замораживания плат),

но в данном материале мы рассмотрим программные средства, которые позволяют изъять содержимое оперативной памяти защищенных машин путем так называемой «горячей» перезагрузки и запуска машины в Live-режиме.

Для выполнения этой задачи будем использовать специальный дистрибутив Ubuntu CyberPack (IRF) 1.0, состоящий из минимального набора компонент, а именно, только те, которые необходимы для изъятия данных из памяти. Соответственно отсутствует и графический интерфейс.

Использование такого подхода к изъятию содержимого оперативной памяти имеет ряд преимуществ и недостатков сравнительно с другими перечисленными выше средствами.
Плюсы:
— использование Live-дистрибутива позволяет проводить действие не зависимо от того какая операционная система установлена на исследуемой машине;
— отсутствуют затраты на приобретение дорогостоящих специальных устройств, кабелей, плат, и др.
Недостаток:
— содержимое оперативной памяти будет неполным — ее часть будет перезаписана данными, необходимыми для запуска Live-дистрибутива (приблизительно 125 Мб).

Для использования доступны специально собранные дистрибутивы для машин с памятью объемом до 3 Гб (і386) и свыше 3 Гб (amd64). С их помощью можно создать загрузочный CD/DVD-диск или загрузочный USB-диск.

Замечания:
второго шанса система нам не дает — у нас есть только одна попытка. т. е. при повторной перезагрузке исследуемого компьютера большая вероятность того что мы уже не найдем необходимой информации. Отсюда следует что не надо перезагружать его несколько раз, экспериментировать, прицеливаться.
Необходимо заранее подготовится и знать как компьютер себя поведет после перезагрузки.
Большинство современных компьютеров позволяют прямо при старте указать откуда производить загрузку, но если этого нет, тогда необходимого настроить BIOS машины на загрузку с CD/DVD-привода или USB-привода/накопителя, после чего загрузить Live-дистрибутив с указанного устройства.

Перезагружаем компьютер.
ВАЖНО: перезагрузка ни в коем случае не должна быть холодной (путем нажатия кнопки «ресет» или выключение\включение питания), а именно — перезагрузка должна быть осуществлена средствами самой работающей системы (например нажатием кнопок Ctrl-Alt-Del или путем выбора пункта «перезагрузка» в системе)

После загрузки дистрибутива пользователю доступна привычная строка консоли Linux, и краткая информация для запуска модуля.

Подготовка к работе программы fmem заключается в выполнении следующих команд:
$ sudo -s
# cd /opt (переход в папку где находиться программа);
# ./run-fmem.sh (скрипт запуска модуля съема памяти);

Замечание: Для дальнейших действий понадобиться примонтировать заранее подготовленный носитель (внешний жесткий диск, флеш-накопитель) с файловой системой ext2/3/4, в который будет сохраняться файл с содержимым оперативной памяти.

Для того, что бы узнать какой идентификатор присоединенному носителю присвоила система, необходимо после его подключения к компьютеру ввести следующую команду:
# dmesg | tail (Команда выводит на экран информацию буфера сообщений ядра. Нас будет интересовать последняя запись.)
Как например вот это:
[16091.995428] sd 9:0:0:0: Attached scsi generic sg2 type 0
[16091.995996] sd 9:0:0:0: [sdb] 32096120 512-byte logical blocks: (16.4 GB/15.3 GiB)
[16091.998192] sd 9:0:0:0: [sdb] Write Protect is off
[16091.998205] sd 9:0:0:0: [sdb] Mode Sense: 0b 00 00 08
[16091.999433] sd 9:0:0:0: [sdb] No Caching mode page found
[16091.999447] sd 9:0:0:0: [sdb] Assuming drive cache: write through
[16092.003486] sd 9:0:0:0: [sdb] No Caching mode page found
[16092.003495] sd 9:0:0:0: [sdb] Assuming drive cache: write through
[16092.004251] sdb: sdb1

(где «sdb» — присвоенное обозначение физического накопителя, а «sdb1» — присвоенное обозначение логического раздела накопителя).

Читайте также:  Как исправить ошибку msvcr71 dll для windows 10

Далее следует примонтировать логический раздел накопителя к папке /tmp загруженной в Live-режиме операционной системы:

# mount /dev/sdb1 /tmp
(где
«mount» — команда монтирования устройства
«/dev/sdb1» — адрес файла логического раздела присоединенного накопителя
«/tmp» — папка в которую необходимо подключить накопитель).

Все подготовительные шаги сделаны — можно переходить к изъятию содержимого оперативной памяти:

# dd if=/dev/fmem of=/tmp/ram-image.mem bs=1K count=`head -1 /proc/meminfo | awk ‘‘`
(где
«dd» — команда создания образа
«if=/dev/fmem» — источник данных, а именно оперативная память
«of=/tmp/ram-image.mem» — запись в файл «ram-image.mem» в папку «/tmp»
«bs=1K» — размер блока информации — 1 Кб
«count=`head -1 /proc/meminfo | awk ‘‘`» — объем оперативной памяти, информация о которой извлекается из файла /proc/meminfo).

И ждем…
В результате удачного выполнения команды, мы получим сообщение похожее на это:

521453568 bytes (521 MB) copied, 158.405 s, 3.3 MB/s
(где
«521453568 bytes (521 MB) copied» — объем скопированной информации
«158.405 s» — время в течении которого проводилась операция
«3.3 MB/s» — скорость при которой проводилась операция)

В результате мы получили содержимое оперативной памяти машины в файле «ram-image.mem» на накопителе. Теперь его можно обрабатывать в т.ч. извлекая части исполняемых процессов, удаленных файлов, информацию о пользовательских сессиях, криптографических ключах и многое другое.

P.S.
Также стоит обратить внимание что все современные системы используют в своей работе и swap-память (так называемый «файл подкачки»)
Файл подкачки – это своеобразное дополнение к оперативной памяти (которая занимается временным хранением данных для быстрой доставки их на обработку процессору) Вашего компьютера. Даже не столько дополнение, сколько её уширение или, можно сказать, продолжение. Дело в том, что когда не хватает оперативной памяти система может переносить данные из памяти на диск (так называемая дополнительная память), в котором соответственно также хранятся данные.
И для полной картины анализа памяти необходимо также получить и их.
Различные операционные системы используют разные способы их хранения.

В случае с Windows это обычно файлы в корне на системном диске С:
pagefile.sys для Win XP и Win 7 и достаточно просто скопировать файл

Для Linux — это отдельный раздел на носителе.
Например:
Команда sudo fdisk -l /dev/sda
покажет нам все разделы в системе
/dev/sda1 * 2048 78125055 39061504 83 Linux
/dev/sda2 78125056 117186559 19530752 82 Linux своп / Solaris
/dev/sda3 117186560 625141759 253977600 83 Linux
Исходя из чего мы видим что раздел подкачки находиться в /dev/sda2
Скопировать его можно также с помощию команды dd.
Например:
dd if=/dev/sda2 of=/media/ /linux-swap.dd

Для MacOS необходимо скопировать все файлы из директории /private/var/vm/swapfile*

Обработка и анализ полученных результатов (как дампа оперативной памяти так и swap-памяти) может проводиться как в ручную с помощью например HEX-редактора, так и с помощью ряда программ о которых будет рассказано в следующий раз.

Источник

Статья Снятие образа RAM памяти с windows и linux

Приветствую)
Речь в этой теме пойдет о снятии слепков оперативной памяти.
Зачем вообще нам нужен дамп оперативки? Да затем что там можно найти много интереснейших и неожиданных вещей)
Каких? Да разных))) Например ключики от криптоконтейнеров, различные сообщения из чатов и соцсетей, посещенные страницы в инете и вообще море системной информации.
Мы рассмотрим пару вариантов поучения дампа)

Читайте также:  Unable open console windows hdd regenerator

Для начала Windows
Вариант 1

Используем бесплатную программу от компании Belkasoft «Belkasoft Live RAM Capture»
Скачать еe можно на оф. сайте, заполняем не большую форму и ссылка приходит к Вам на электронную почту.
Что можно сказать об этой программе, работает быстро и просто, не требует установки.
Запускаем исполняемый файл, выбираем путь куда будет сохранен образ и жмем capture

Вариант 2
FTK Imager
Тоже довольно шустрая программулина, в отличии от первой требует установки.
Скачивается так же как и предыдущая, приходит ссылка на электронную почту. Скачиваем, установка проходит буквально в пару кликов.
После запуска жмем File>CaptureMemory
Точно так же выбираем путь и кликакем Capture Memory
Через несколько минут слепок будет готов)

Linux
Для линукса я использовал только одну программу, имя ей LiME
Это инструмент командной строки

и все, в папке будет создан файл image.lime это и есть наш дамп)

Это далеко не все способы получения RAM памяти, есть дистрибутив имеется возможность получения дампа с помощью порта FireWire, так же возможно физическое изьятие ОЗУ с замораживанием платы.

Для исследования содержимого оперативной памяти есть огромное количество утилит, как для линукс систем, так и для windows
На этом я думаю пока что все)

Источник

How to dump memory image from linux system?

I know to dump memory images in Windows. (eg-dumpit) But I don’t know how to dump memory images in Linux.

I want to get memory images in Linux and from Linux to Linux with ssh connection or something.

How can I get in Linux?

3 Answers 3

Linux

/dev/mem

On older Linux systems, the program dd can be used to read the contents of physical memory from the device file /dev/mem. On recent Linux systems, however, /dev/mem provides access only to a restricted range of addresses, rather than the full physical memory of a system. On other systems it may not be available at all. Throughout the 2.6 series of the Linux kernel, the trend was to reduce direct access to memory via pseudo-device files. See, for example, the message accompanying this patch: http://lwn.net/Articles/267427/.

/dev/crash

On Red Hat systems (and those running related distros such as Fedora or CentOS), the crash driver can be loaded to create pseudo-device /dev/crash for raw physical memory access (via command «modprobe crash»). This module can also be compiled for other Linux distributions with minor effort (see, for example, http://gleeda.blogspot.com/2009/08/devcrash-driver.html). When the crash driver is modified, compiled, and loaded on other systems, the resulting memory access device is not safe to image in its entirety. Care must be taken to avoid addresses that are not RAM-backed. On Linux, /proc/iomem exposes the correct address ranges to image, marked with «System RAM».

Second Look: Linux Memory Forensics

This commercial memory forensics product ships with a modified version of the crash driver and a script for safely dumping memory using the original or modified driver on any given Linux system.

fmem fmem — github repo

fmem is kernel module that creates device /dev/fmem, similar to /dev/mem but without limitations. This device (physical RAM) can be copied using dd or other tool. Works on 2.6 Linux kernels. Under GNU GPL.

LiME — Linux Memory Extractor

Linux Memory Extractor (LiME) is a Loadable Kernel Module (LKM), which allows the acquisition of volatile memory from Linux and Linux-based devices, such as those powered by Android. The tool supports dumping memory either to the file system of the device or over the network.

Читайте также:  Как увеличить скорость обмена данными с жестким диском windows

I found this example of fmem in use, which seems to be the easiest way to dump memory for analysis purposes, you can no longer use /dev/mem after the 2.6.x kernels, as I understand it.

fmem Example

LiME Example

For analyzing volatile memory there’s also this page, titled: Linux Memory Analysis. There’s a thorough example in this video tutorial that shows the use of LiME and Volatility to collect a memory dump and then analyze it, extracting the user’s Bash history from the memory dump.

What else?

There’s also this U&L Q&A titled: How can I dump the full system memory? which has additional examples and information.

Источник

How do I dump physical memory in Linux?

How would one create a dump of the physical memory (RAM) in Linux?

What software if any is available for this purpose?

I have read that one should not write to a local disk but rather send the data over the network. Anyone know the peculiarities here? Would Ethernet work for this purpose, or are there any commands which minimize the amount of caching before sending to disk?

WinHex on Windows has such functionality:

I am looking for something similar on Linux.

4 Answers 4

Here is a eHow page on How to Dump Linux Memory

Linux provides two virtual devices for this purpose, ‘ /dev/mem ‘ and ‘ /dev/kmem ‘, though many distributions disable them by default for security reasons. ‘ /dev/mem ‘ is linked to the physical system memory, whereas ‘ /dev/kmem ‘ maps to the entire virtual memory space, including any swap. Both devices work as regular files, and can be used with dd or any other file manipulation tool.

That leads to the ForensicsWiki page on Memory Imaging Tools with the Linux/Unix section,

  1. dd On Unix systems, the program dd can be used to capture the contents of physical memory using a device file (e.g. /dev/mem and /dev/kmem). In recent Linux kernels, /dev/kmem is no longer available. In even more recent kernels, /dev/mem has additional restrictions. And in the most recent, /dev/mem is no longer available by default, either. Throughout the 2.6 kernel series the trend has been to reduce direct access to memory via pseudo-device files. See, for example, the message accompanying this patch: http://lwn.net/Articles/267427/. On Red Hat systems (and derived distros such as CentOS), the crash driver can be loaded to create a pseudo-device for memory access («modprobe crash»).
  2. Second Look This commercial memory analysis product has the ability to acquire memory from Linux systems, either locally or from a remote target via DMA or over the network. It comes with pre-compiled Physical Memory Access Driver (PMAD) modules for hundreds of kernels from the most commonly used Linux distributions.
  3. Idetect (Linux)
  4. fmem (Linux)
    fmem is kernel module, that creates device /dev/fmem, similar to /dev/mem but without limitations. This device (physical RAM) can be copied using dd or other tool. Works on 2.6 Linux kernels. Under GNU GPL.
  5. Goldfish
    Goldfish is a Mac OS X live forensic tool for use only by law enforcement. Its main purpose is to provide an easy to use interface to dump the system RAM of a target machine via a Firewire connection. It then automatically extracts the current user login password and any open AOL Instant Messenger conversation fragments that may be available. Law Enforcement may contact goldfish.ae for download information.

See Also: Linux Memory Analysis.
There is also GDB commonly available on most Linuxes.
And, you are always advised to avoid writing over unknown memory — it can lead to system corruption.

Источник

Оцените статью