Linux количество tcp соединений

Сколько TCP соединений можно поднять на линуксе ?

Интерисует максимальный предел.
Соединений имеется в виду конешно одновременно.
и можно ли этот лимит, если он есть, как-то изменить,
в практической задаче необходимо около 100-200 тысяч соединений

Re: Сколько TCP соединений можно поднять на линуксе ?

listen() — для этого и предназначена почитай про нее man а что касается настроек сокета, то это если не ошибаюсь getsockopt() в man тоже она есть

Re: Сколько TCP соединений можно поднять на линуксе ?

>Сколько TCP соединений можно поднять на линуксе ? >Интерисует максимальный предел. >Соединений имеется в виду конешно одновременно.

на сколько хватит файловых дескрипторов

>и можно ли этот лимит, если он есть, как-то изменить,

в 2.4 ето жёсткий лимит. В 2.6 возможно можна

>в практической задаче необходимо около 100-200 тысяч соединений

По моему на один процесс — никак. На несколько процессов — не знаю.

Re: Сколько TCP соединений можно поднять на линуксе ?

меня интерисуют системные лимиты
listen(SO_MAXCONN)
и setrlimit(RLIMIT_NOFILE)
это известно и понятно

Re: Сколько TCP соединений можно поднять на линуксе ?

Я в свое время столкнулся с ограничением, что 1024 сокетов могут быть открыты одновременно одним процессом. Это лечится, используя fork, т.е. accept порождает сокет — этот сокет предается функции, которая fork’ом запускается, как отдельный процесс. Сама функция должна только читать или писать в из сокета, и после завершения этих операций нужно закрыть сокет, созданный accept и завершать exit() и можно return. Но необходимо перед завершением передать данные с помощью IPC другой функции. Если операция с данными не критичны по времени, то можно обработку этих данных производить в этой функции, тогда использовать IPC не понадобится.

В этом случае, необходимо, как-то различать данные кому они предназначены.

Re: Сколько TCP соединений можно поднять на линуксе ?

Простите, я может быть чего-то не понимаю, но как мне видится TCP-соединение подразумевает захват процессом конкретного порта, а их всего 65535, т.к. порт занимает ровно 2 байта. Далее, одновременно с каждым портом может быть связан только 1 процесс, к тому определенное кол-во портов уже зарезервировано для стандартных служб и сервисов. Итого, свободными остаются уж ни как не 100 тыс. и тем более не 200 тыс., а ★★★★★ ( 24.01.05 21:47:41 )

Re: Сколько TCP соединений можно поднять на линуксе ?

Из расчета на 1 сетевой интерфейс естественно.

Источник

Настройка Linux для высоконагруженных проектов и защиты от DDoS

// 16 декабря, 2013 | 83444 просмотров

В Интернете довольно много разных примеров конфигурации ядра Linux для поддержания большого количества соединений, высоконагруженных веб проектов и противодействия DDoS-атакам. Вот ещё один из примеров, что я уже смог попробовать на практике. Скажу сразу — мне более чем помогло. Попробуйте и вы.

Вот опции, что необходимо добавить в конец /etc/sysctl.conf

А теперь о каждой опции более детально.

Не принимать и не отправлять ICMP-пакеты перенаправления. ICMP-перенаправления могут быть использованы злоумышленником для изменения таблиц маршрутизации. Целесообразно выставить в «0″. Единица имеет смысл только для хостов, использующихся в качестве маршрутизаторов.

Целочисленное значение параметра tcp_max_orphans определяет максимальное число допустимых в системе сокетов TCP, не связанных каким-либо идентификатором пользовательского файла (user file handle). При достижении порогового значения “осиротевшие” (orphan) соединения незамедлительно сбрасываются с выдачей предупреждения. Этот порог помогает предотвращать только простые атаки DoS. Не следует уменьшать пороговое значение (скорее увеличить его в соответствии с требованиями системы – например, после добавления памяти. Каждое orphan-соединение поглощает около 64 Кбайт несбрасываемой на диск (unswappable) памяти.

Читайте также:  Windows для ноутбука паккард белл

Параметр tcp_fin_timeout определяет время сохранения сокета в состоянии FIN-WAIT-2 после его закрытия локальной стороной. Партнер может не закрыть это соединение никогда, поэтому следует закрыть его по своей инициативе по истечении тайм-аута. По умолчанию тайм-аут составляет 60 секунд. В ядрах серии 2.2 обычно использовалось значение 180 секунд и вы можете сохранить это значение, но не следует забывать, что на загруженных WEB-серверах вы рискуете израсходовать много памяти на сохранение полуразорванных мертвых соединений. Сокеты в состоянии FIN-WAIT-2 менее опасны, нежели FIN-WAIT-1 , поскольку поглощают не более 1,5 Кбайт памяти, но они могут существовать дольше.

tcp_keepalive_time Переменная определяет как часто следует проверять соединение, если оно давно не используется. Значение переменной имеет смысл только для тех сокетов, которые были созданы с флагом SO_KEEPALIVE . Целочисленная переменная tcp_keepalive_intvl определяет интервал передачи проб. Произведение tcp_keepalive_probes * tcp_keepalive_intvl определяет время, по истечении которого соединение будет разорвано при отсутствии откликов. По умолчанию установлен интервал 75 секунд, т.е., время разрыва соединения при отсутствии откликов составит приблизительно 11 минут.

Целочисленное значение в файле tcp_max_syn_backlog определяет максимальное число запоминаемых запросов на соединение, для которых не было получено подтверждения от подключающегося клиента. Если на сервере возникают перегрузки, можно попытаться увеличить это значение.

Целочисленное значение (1 байт) tcp_synack_retries определяет число попыток повтора передачи пакетов SYNACK для пассивных соединений TCP. Число попыток не должно превышать 255. Значение 5 соответствует приблизительно 180 секундам на выполнение попыток организации соединения.

Векторная (минимум, режим нагрузки, максимум) переменная в файле tcp_mem cодержит общие настройки потребления памяти для протокола TCP. Эта переменная измеряется в страницах (обычно 4Кб), а не байтах.

Минимум: пока общий размер памяти для структур протокола TCP менее этого количества страниц, операционная система ничего не делает.

Режим нагрузки: как только количество страниц памяти, выделенное для работы протокола TCP, достигает этого значения, активируется режим работы под нагрузкой, при котором операционная система старается ограничивать выделение памяти. Этот режим сохраняется до тех пор, пока потребление памяти опять не достигнет минимального уровня.

Максимум: максимальное количество страниц памяти, разрешенное для всех TCP сокетов.

Векторная (минимум, по умолчанию, максимум) переменная в файле tcp_rmem содержит 3 целых числа, определяющих размер приемного буфера сокетов TCP.

Минимум: каждый сокет TCP имеет право использовать эту память по факту своего создания. Возможность использования такого буфера гарантируется даже при достижении порога ограничения (moderate memory pressure). Размер минимального буфера по умолчанию составляет 8 Кбайт (8192).

Значение по умолчанию: количество памяти, допустимое для буфера передачи сокета TCP по умолчанию. Это значение применяется взамен параметра /proc/sys/net/core/rmem_default , используемого другими протоколами. Значение используемого по умолчанию буфера обычно (по умолчанию) составляет 87830 байт. Это определяет размер окна 65535 с заданным по умолчанию значением tcp_adv_win_scale и tcp_app_win = 0 , несколько меньший, нежели определяет принятое по умолчанию значение tcp_app_win .

Максимум: максимальный размер буфера, который может быть автоматически выделен для приема сокету TCP. Это значение не отменяет максимума, заданного в файле /proc/sys/net/core/rmem_max . При «статическом» выделении памяти с помощью SO_RCVBUF этот параметр не имеет значения.

Векторная переменная в файле tcp_wmem содержит 3 целочисленных значения, определяющих минимальное, принятое по умолчанию и максимальное количество памяти, резервируемой для буферов передачи сокета TCP.

Минимум: каждый сокет TCP имеет право использовать эту память по факту своего создания. Размер минимального буфера по умолчанию составляет 4 Кбайт (4096)

Значение по умолчанию: количество памяти, допустимое для буфера передачи сокета TCP по умолчанию. Это значение применяется взамен параметра /proc/sys/net/core/wmem_default , используемого другими протоколами и обычно меньше, чем /proc/sys/net/core/wmem_default . Размер принятого по умолчанию буфера обычно (по умолчанию) составляет 16 Кбайт (16384)

Максимум: максимальное количество памяти, которое может быть автоматически выделено для буфера передачи сокета TCP. Это значение не отменяет максимум, заданный в файле /proc/sys/net/core/wmem_max . При «статическом» выделении памяти с помощью SO_SNDBUF этот параметр не имеет значения.

Целочисленной значение tcp_orphan_retries определяет число неудачных попыток, после которого уничтожается соединение TCP, закрытое на локальной стороне. По умолчанию используется значение 7, соответствующее приблизительно периоду от 50 секунд до 16минут в зависимости от RTO . На сильно загруженных WEB-серверах имеет смысл уменьшить значение этого параметра, поскольку закрытые соединения могут поглощать достаточно много ресурсов.

Читайте также:  По для панасоник kx mb1500 windows 10

Согласно рекомендациям разработчиков ядра, этот режим лучше отключить.

Максимальное количество соединений для работы механизма connection tracking (используется, например, iptables). При слишком маленьких значениях ядро начинает отвергать входящие подключения с соответствующей записью в системном логе.

Разрешает временные метки протокола TCP. Их наличие позволяет управлять работой протокола в условиях серьезных нагрузок (см. tcp_congestion_control ).

Разрешить выборочные подтверждения протокола TCP. Опция необходима для эффективного использования всей доступной пропускной способности некоторых сетей.

Протокол, используемый для управления нагрузкой в сетях TCP. bic и cubic реализации, используемые по умолчанию, содержат баги в большинстве версий ядра RedHat и ее клонов. Рекомендуется использовать htcp .

Не сохранять результаты измерений TCP соединения в кеше при его закрытии. В некоторых случаях помогает повысить производительность.

Актуально для ядер 2.4. По странной причине в ядрах 2.4, если в рамках TCP сессии произошел повтор передачи с уменьшенным размером окна, все соединения с данным хостом в следующие 10 минут будут иметь именно этот уменьшенный размер окна. Данная настройка позволяет этого избежать.

Активируем защиту от IP-спуфинга.

Увеличиваем диапазон локальных портов, доступных для установки исходящих подключений

Разрешаем повторное использование TIME-WAIT сокетов в случаях, если протокол считает это безопасным.

Разрешаем динамическое изменение размера окна TCP стека

Запрещаем переадресацию пакетов, поскольку мы не роутер.

Не отвечаем на ICMP ECHO запросы, переданные широковещательными пакетами

Можно вообще не отвечать на ICMP ECHO запросы (сервер не будет пинговаться)

Не отвечаем на ошибочно сформированные сообщения

Максимальное число открытых сокетов, ждущих соединения. Имеет смысл увеличить значение по умолчанию.

Параметр определяет максимальное количество пакетов в очереди на обработку, если интерфейс получает пакеты быстрее, чем ядро может их обработать.

Размер буфера приема данных по умолчанию для всех соединений.

Размер буфера передачи данных по умолчанию для всех соединений.

Максимальный размер буфера приема данных для всех соединений.

Максимальный размер буфера передачи данных для всех соединений.

Источник

Мониторинг сетевого стека linux

Часто мониторинг сетевой подсистемы операционной системы заканчивается на счетчиках пакетов, октетов и ошибок сетевых интерфейсах. Но это только 2й уровень модели OSI!
С одной стороны большинство проблем с сетью возникают как раз на физическом и канальном уровнях, но с другой стороны приложения, работающие с сетью оперируют на уровне TCP сессий и не видят, что происходит на более низких уровнях.

Я расскажу, как достаточно простые метрики TCP/IP стека могут помочь разобраться с различными проблемами в распределенных системах.

Почти все знают утилиту netstat в linux, она может показать все текущие TCP соединения и дополнительную информацию по ним. Но при большом количестве соединений netstat может работать достаточно долго и существенно нагрузить систему.

Есть более дешевый способ получить информацию о соединениях — утилита ss из проекта iproute2.

Ускорение достигается за счет использования протола netlink для запросов информации о соединениях у ядра. Наш агент использует netlink напрямую.

Считаем соединения

Disclaimer: для иллюстрации работы с метриками в разных срезах я буду показывать наш интерфейс (dsl) работы с метриками, но это можно сделать и на opensource хранилищах.

В первую очередь мы разделяем все соединения на входящие (inbound) и исходящие (outbound) по отношению к серверу.

Каждое TCP соединения в определенный момент времени находится в одном из состояний, разбивку по которым мы тоже сохраняем (это иногда может оказаться полезным):

По этому графику можно оценить общее количество входящих соединений, распределение соединений по состояниям.

Здесь так же видно резкое падение общего количества соединений незадолго до 11 Jun, попробуем посмотреть на соединения в разрезе listen портов:

На этом графике видно, что самое значительное падение было на порту 8014, посмотрим только 8014 (у нас в интерфейсе можно просто нажать на нужном элементе легенды):

Попробуем посмотреть, изменилось ли количество входящий соединений по всем серверам?

Выбираем серверы по маске “srv10*”:

Теперь мы видим, что количество соединений на порт 8014 не изменилось, попробуем найти на какой сервер они мигрировали:

Мы ограничили выборку только портом 8014 и сделали группировку не по порту, а по серверам.

Теперь понятно, что соединения с сервера srv101 перешли на srv102.

Разбивка по IP

Часто бывает необходимо посмотреть, сколько было соединений с различных IP адресов. Наш агент снимает количество TCP соединений не только с разбивкой по listen портам и состояниям, но и по удаленному IP, если данный IP находится в том же сегменте сети (для всех остальный адресов метрики суммируются и вместо IP мы показываем “

Читайте также:  Как установить android с mac os

Рассмотрим тот же период времени, что и в предыдущих случаях:

Здесь видно, что соединений с 192.168.100.1 стало сильно меньше и в это же время появились соединения с 192.168.100.2.

Детализация рулит

На самом деле мы работали с одной метрикой, просто она была сильно детализирована, индентификатор каждого экземпляра выглядит примерно так:

Например, у одно из клиентов на нагруженном сервере-фронтенде снимается

700 экземпляров этой метрики

TCP backlog

По метрикам TCP соединений можно не только диагностировать работу сети, но и определять проблемы в работе сервисов.

Например, если какой-то сервис, обслуживающий клиентов по сети, не справляется с нагрузкой и перестает обрабатывать новые соединения, они ставятся в очередь (backlog).

На самом деле очереди две:

  • SYN queue — очередь неустановленных соединений (получен пакет SYN, SYN-ACK еще не отправлен), размер ограничен согласно sysctl net.ipv4.tcp_max_syn_backlog;
  • Accept queue — очередь соединений, для которых получен пакет ACK (в рамках «тройного рукопожатия»), но не был выполнен accept приложением (очередь ограничивается приложением)

При достижении лимита accept queue ACK пакет удаленного хоста просто отбрасывается или отправляется RST (в зависимости от значения переменной sysctl net.ipv4.tcp_abort_on_overflow).

Наш агент снимает текущее и максимальное значение accept queue для всех listen сокетов на сервере.

Для этих метрик есть график и преднастроенный триггер, который уведомит, если backlog любого сервиса использован более чем на 90%:

Счетчики и ошибки протоколов

Однажды сайт одного из наших клиентов подвергся DDOS атаке, в мониторинге было видно только увеличение трафика на сетевом интерфейсе, но мы не показывали абсолютно никаких метрик по содержанию этого трафика.

В данный момент однозначного ответа на этот вопрос окметр дать по-прежнему не может, так как сниффинг мы только начали осваивать, но мы немного продвинулись в этом вопросе.

Попробуем что-то понять про эти выбросы входящего трафика:

Теперь мы видим, что это входящий UDP трафик, но здесь не видно первых из трех выбросов.
Дело в том, что счетчики пакетов по протоколам в linux увеличиваются только в случае успешной обработки пакета.

Попробуем посмотреть на ошибки:

А вот и наш первый пик — ошибки UDP:NoPorts (количество датаграмм, пришедших на UPD порты, которые никто не слушает)

Данный пример мы эмулировали с помощью iperf, и в первый заход не включили на сервер-приемщик пакетов на нужном порту.

TCP ретрансмиты

Отдельно мы показываем количество TCP ретрансмитов (повторных отправок TCP сегментов).

Само по себе наличие ретрансмитов не означает, что в вашей сети есть потери пакетов.
Повторная передача сегмента осуществляется, если передающий узел не получил от принимающего подтверждение (ACK) в течении определенного времени (RTO).

Данный таймаут расчитывается динамически на основе замеров времени передачи данных между конкретными хостами (RTT) для того, чтобы обеспечивать гарантированную передачу данных при сохранении минимальных задержек.

На практике количество ретрансмитов обычно коррелирует с нагрузкой на серверы и важно смотреть не на абсолютное значение, а на различные аномалии:

На данном графике мы видим 2 выброса ретрансмитов, в это же время процессы postgres утилизировали CPU данного сервера:

Cчетчики протоколов мы получаем из /proc/net/snmp.

Conntrack

Еще одна распространенная проблема — переполнение таблицы ip_conntrack в linux (используется iptables), в этом случае linux начинает просто отбрасывать пакеты.

Это видно по сообщению в dmesg:

Агент автоматически снимает текущий размер данной таблицы и лимит с серверов, использующих ip_conntrack.

В окметре так же есть автоматический триггер, который уведомит, если таблица ip_conntrack заполнена более чем на 90%:

На данном графике видно, что таблица переполнялась, лимит подняли и больше он не достигался.

Вместо заключения

Примеры наших стандартных графиков можно посмотреть в нашем демо-проекте.
Там же можно постмотреть графики Netstat.

Источник

Оцените статью