- Просто о make
- Make- основные сведения
- Простейший Makefile
- Компиляция из множества исходников
- Инкрементная компиляция
- Фиктивные цели
- Переменные
- Автоматические переменные
- C: создание и применение shared library в Linux
- Создание библиотеки
- Shared libraries with GCC on Linux
- Step 1: Compiling with Position Independent Code
- Step 2: Creating a shared library from an object file
- Step 3: Linking with a shared library
- Telling GCC where to find the shared library
- Step 4: Making the library available at runtime
- Using LD_LIBRARY_PATH
- Using rpath
- rpath vs. LD_LIBRARY_PATH
- Using ldconfig to modify ld.so
Просто о make
Меня всегда привлекал минимализм. Идея о том, что одна вещь должна выполнять одну функцию, но при этом выполнять ее как можно лучше, вылилась в создание UNIX. И хотя UNIX давно уже нельзя назвать простой системой, да и минимализм в ней узреть не так то просто, ее можно считать наглядным примером количество- качественной трансформации множества простых и понятных вещей в одну весьма непростую и не прозрачную. В своем развитии make прошел примерно такой же путь: простота и ясность, с ростом масштабов, превратилась в жуткого монстра (вспомните свои ощущения, когда впервые открыли мэйкфайл).
Мое упорное игнорирование make в течении долгого времени, было обусловлено удобством используемых IDE, и нежеланием разбираться в этом ‘пережитке прошлого’ (по сути — ленью). Однако, все эти надоедливые кнопочки, менюшки ит.п. атрибуты всевозможных студий, заставили меня искать альтернативу тому методу работы, который я практиковал до сих пор. Нет, я не стал гуру make, но полученных мною знаний вполне достаточно для моих небольших проектов. Данная статья предназначена для тех, кто так же как и я еще совсем недавно, желают вырваться из уютного оконного рабства в аскетичный, но свободный мир шелла.
Make- основные сведения
make — утилита предназначенная для автоматизации преобразования файлов из одной формы в другую. Правила преобразования задаются в скрипте с именем Makefile, который должен находиться в корне рабочей директории проекта. Сам скрипт состоит из набора правил, которые в свою очередь описываются:
1) целями (то, что данное правило делает);
2) реквизитами (то, что необходимо для выполнения правила и получения целей);
3) командами (выполняющими данные преобразования).
В общем виде синтаксис makefile можно представить так:
То есть, правило make это ответы на три вопроса:
Несложно заметить что процессы трансляции и компиляции очень красиво ложатся на эту схему:
Простейший Makefile
Предположим, у нас имеется программа, состоящая всего из одного файла:
Для его компиляции достаточно очень простого мэйкфайла:
Данный Makefile состоит из одного правила, которое в свою очередь состоит из цели — «hello», реквизита — «main.c», и команды — «gcc -o hello main.c». Теперь, для компиляции достаточно дать команду make в рабочем каталоге. По умолчанию make станет выполнять самое первое правило, если цель выполнения не была явно указана при вызове:
Компиляция из множества исходников
Предположим, что у нас имеется программа, состоящая из 2 файлов:
main.c
Makefile, выполняющий компиляцию этой программы может выглядеть так:
Он вполне работоспособен, однако имеет один значительный недостаток: какой — раскроем далее.
Инкрементная компиляция
Представим, что наша программа состоит из десятка- другого исходных файлов. Мы вносим изменения в один из них, и хотим ее пересобрать. Использование подхода описанного в предыдущем примере приведет к тому, что все без исключения исходные файлы будут снова скомпилированы, что негативно скажется на времени перекомпиляции. Решение — разделить компиляцию на два этапа: этап трансляции и этап линковки.
Теперь, после изменения одного из исходных файлов, достаточно произвести его трансляцию и линковку всех объектных файлов. При этом мы пропускаем этап трансляции не затронутых изменениями реквизитов, что сокращает время компиляции в целом. Такой подход называется инкрементной компиляцией. Для ее поддержки make сопоставляет время изменения целей и их реквизитов (используя данные файловой системы), благодаря чему самостоятельно решает какие правила следует выполнить, а какие можно просто проигнорировать:
Попробуйте собрать этот проект. Для его сборки необходимо явно указать цель, т.е. дать команду make hello.
После- измените любой из исходных файлов и соберите его снова. Обратите внимание на то, что во время второй компиляции, транслироваться будет только измененный файл.
После запуска make попытается сразу получить цель hello, но для ее создания необходимы файлы main.o и hello.o, которых пока еще нет. Поэтому выполнение правила будет отложено и make станет искать правила, описывающие получение недостающих реквизитов. Как только все реквизиты будут получены, make вернется к выполнению отложенной цели. Отсюда следует, что make выполняет правила рекурсивно.
Фиктивные цели
На самом деле, в качестве make целей могут выступать не только реальные файлы. Все, кому приходилось собирать программы из исходных кодов должны быть знакомы с двумя стандартными в мире UNIX командами:
Командой make производят компиляцию программы, командой make install — установку. Такой подход весьма удобен, поскольку все необходимое для сборки и развертывания приложения в целевой системе включено в один файл (забудем на время о скрипте configure). Обратите внимание на то, что в первом случае мы не указываем цель, а во втором целью является вовсе не создание файла install, а процесс установки приложения в систему. Проделывать такие фокусы нам позволяют так называемые фиктивные (phony) цели. Вот краткий список стандартных целей:
- all — является стандартной целью по умолчанию. При вызове make ее можно явно не указывать.
- clean — очистить каталог от всех файлов полученных в результате компиляции.
- install — произвести инсталляцию
- uninstall — и деинсталляцию соответственно.
Для того чтобы make не искал файлы с такими именами, их следует определить в Makefile, при помощи директивы .PHONY. Далее показан пример Makefile с целями all, clean, install и uninstall:
Теперь мы можем собрать нашу программу, произвести ее инсталлцию/деинсталляцию, а так же очистить рабочий каталог, используя для этого стандартные make цели.
Обратите внимание на то, что в цели all не указаны команды; все что ей нужно — получить реквизит hello. Зная о рекурсивной природе make, не сложно предположить как будет работать этот скрипт. Так же следует обратить особое внимание на то, что если файл hello уже имеется (остался после предыдущей компиляции) и его реквизиты не были изменены, то команда make ничего не станет пересобирать. Это классические грабли make. Так например, изменив заголовочный файл, случайно не включенный в список реквизитов, можно получить долгие часы головной боли. Поэтому, чтобы гарантированно полностью пересобрать проект, нужно предварительно очистить рабочий каталог:
Для выполнения целей install/uninstall вам потребуются использовать sudo.
Переменные
Все те, кто знакомы с правилом DRY (Don’t repeat yourself), наверняка уже заметили неладное, а именно — наш Makefile содержит большое число повторяющихся фрагментов, что может привести к путанице при последующих попытках его расширить или изменить. В императивных языках для этих целей у нас имеются переменные и константы; make тоже располагает подобными средствами. Переменные в make представляют собой именованные строки и определяются очень просто:
Существует негласное правило, согласно которому следует именовать переменные в верхнем регистре, например:
Так мы определили список исходных файлов. Для использования значения переменной ее следует разименовать при помощи конструкции $( ); например так:
Ниже представлен мэйкфайл, использующий две переменные: TARGET — для определения имени целевой программы и PREFIX — для определения пути установки программы в систему.
Это уже посимпатичней. Думаю, теперь вышеприведенный пример для вас в особых комментариях не нуждается.
Автоматические переменные
Автоматические переменные предназначены для упрощения мейкфайлов, но на мой взгляд негативно сказываются на их читабельности. Как бы то ни было, я приведу здесь несколько наиболее часто используемых переменных, а что с ними делать (и делать ли вообще) решать вам:
Источник
C: создание и применение shared library в Linux
Библиотека — это файл, содержащий скопилированный код из нескольких объектных файлов в один файл библиотеки, который может содержать функции используемые другими программами.
Библиотеки могут быть статичными (static) и динамическими или разделяемыми (dynamic, shared).
Ниже — краткий пример создания и применения shared library на C в Linux.
Доступ к общей библиотеке может осуществляться по нескольким именам:
- имя, используемое «линкером» /usr/bin/ld (linker name), в виде слова lib + имя библиотеки + расширение .so , например — libpthread.so
- Полное имя (fully qualified name или soname), в виде lib + name + .so + версия (например — libpthread.so.1 )
- реальное имя — полное имя файла, содержащего версию библиотеки, в виде lib + имя + .so + версия + минорная версия и опционально — версия релиза (например — libpthread.so.1.1 )
Версия для общей бибилиотеки меняется в случае, когда изменения в коде этой бибилиотеки делают её несовместимой с предыдущими версиями, например — если из библиотеки была убрана какая-то функция ( libpthread.so.1 )
Минорная версия меняется, если изменения не затронули совметимость библиотеки, например — какой-то фикс в одной из функций. В таком случае версия останется прежней, а изменится только минорная часть ( libpthread.so.1.1 ).
Такое соглашение об именах версий библиотек позволяет существование разных версий одной библиотеки в одной системе.
Программа, которая будет линковаться с этой бибилиотекой, не будет привязана к определённому файлу с последней версией библиотеки. Вместо этого, после установки последней версии — все связанные программы будут использовать её.
Создание библиотеки
Создадим простой файл libhello.c с одной функцией:
Создаём заголовочный файл библиотеки libhello.h с прототипом функции:
Приступаем к сборке библиотеки.
Создаём объектный файл, указав опцию PIC (Position Independent Code), Warning ( -Wall — warning all), -g для добавления дебаг-информации и -c — что бы создать только файл библиотеки, без вызова линкера:
Проверяем — теперь у нас имеется объектный файл .o :
Источник
Shared libraries with GCC on Linux
Libraries are an indispensable tool for any programmer. They are pre-existing code that is compiled and ready for you to use. They often provide generic functionality, like linked lists or binary trees that can hold any data, or specific functionality like an interface to a database server such as MySQL.
Most larger software projects will contain several components, some of which you may find use for later on in some other project, or that you just want to separate out for organizational purposes. When you have a reusable or logically distinct set of functions, it is helpful to build a library from it so that you do not have to copy the source code into your current project and recompile it all the time — and so you can keep different modules of your program disjoint and change one without affecting others. Once it is been written and tested, you can safely reuse it over and over again, saving the time and hassle of building it into your project every time.
Building static libraries is fairly simple, and since we rarely get questions on them, I will not cover them. I will stick with shared libraries, which seem to be more confusing for most people.
Before we get started, it might help to get a quick rundown of everything that happens from source code to running program:
- C Preprocessor: This stage processes all the preprocessor directives. Basically, any line that starts with a #, such as #define and #include.
- Compilation Proper: Once the source file has been preprocessed, the result is then compiled. Since many people refer to the entire build process as compilation, this stage is often referred to as compilation proper. This stage turns a .c file into an .o (object) file.
- Linking: Here is where all of the object files and any libraries are linked together to make your final program. Note that for static libraries, the actual library is placed in your final program, while for shared libraries, only a reference to the library is placed inside. Now you have a complete program that is ready to run. You launch it from the shell, and the program is handed off to the loader.
- Loading: This stage happens when your program starts up. Your program is scanned for references to shared libraries. Any references found are resolved and the libraries are mapped into your program.
Steps 3 and 4 are where the magic (and confusion) happens with shared libraries.
Now, on to our (very simple) example.
foo.h defines the interface to our library, a single function, foo(). foo.c contains the implementation of that function, and main.c is a driver program that uses our library.
For the purposes of this example, everything will happen in /home/username/foo
Step 1: Compiling with Position Independent Code
We need to compile our library source code into position-independent code (PIC): 1
Step 2: Creating a shared library from an object file
Now we need to actually turn this object file into a shared library. We will call it libfoo.so:
Step 3: Linking with a shared library
As you can see, that was actually pretty easy. We have a shared library. Let us compile our main.c and link it with libfoo. We will call our final program test. Note that the -lfoo option is not looking for foo.o, but libfoo.so. GCC assumes that all libraries start with lib and end with .so or .a (.so is for shared object or shared libraries, and .a is for archive, or statically linked libraries).
Telling GCC where to find the shared library
Uh-oh! The linker does not know where to find libfoo. GCC has a list of places it looks by default, but our directory is not in that list. 2 We need to tell GCC where to find libfoo.so. We will do that with the -L option. In this example, we will use the current directory, /home/username/foo:
Step 4: Making the library available at runtime
Good, no errors. Now let us run our program:
Oh no! The loader cannot find the shared library. 3 We did not install it in a standard location, so we need to give the loader a little help. We have a couple of options: we can use the environment variable LD_LIBRARY_PATH for this, or rpath. Let us take a look first at LD_LIBRARY_PATH:
Using LD_LIBRARY_PATH
There is nothing in there. Let us fix that by prepending our working directory to the existing LD_LIBRARY_PATH:
What happened? Our directory is in LD_LIBRARY_PATH, but we did not export it. In Linux, if you do not export the changes to an environment variable, they will not be inherited by the child processes. The loader and our test program did not inherit the changes we made. Thankfully, the fix is easy:
Good, it worked! LD_LIBRARY_PATH is great for quick tests and for systems on which you do not have admin privileges. As a downside, however, exporting the LD_LIBRARY_PATH variable means it may cause problems with other programs you run that also rely on LD_LIBRARY_PATH if you do not reset it to its previous state when you are done.
Using rpath
Now let s try rpath (first we will clear LD_LIBRARY_PATH to ensure it is rpath that is finding our library). Rpath, or the run path, is a way of embedding the location of shared libraries in the executable itself, instead of relying on default locations or environment variables. We do this during the linking stage. Notice the lengthy “-Wl,-rpath=/home/username/foo” option. The -Wl portion sends comma-separated options to the linker, so we tell it to send the -rpath option to the linker with our working directory.
Excellent, it worked. The rpath method is great because each program gets to list its shared library locations independently, so there are no issues with different programs looking in the wrong paths like there were for LD_LIBRARY_PATH.
rpath vs. LD_LIBRARY_PATH
There are a few downsides to rpath, however. First, it requires that shared libraries be installed in a fixed location so that all users of your program will have access to those libraries in those locations. That means less flexibility in system configuration. Second, if that library refers to a NFS mount or other network drive, you may experience undesirable delays — or worse — on program startup.
Using ldconfig to modify ld.so
What if we want to install our library so everybody on the system can use it? For that, you will need admin privileges. You will need this for two reasons: first, to put the library in a standard location, probably /usr/lib or /usr/local/lib, which normal users do not have write access to. Second, you will need to modify the ld.so config file and cache. As root, do the following:
Now the file is in a standard location, with correct permissions, readable by everybody. We need to tell the loader it is available for use, so let us update the cache:
That should create a link to our shared library and update the cache so it is available for immediate use. Let us double check:
Now our library is installed. Before we test it, we have to clean up a few things:
Clear our LD_LIBRARY_PATH once more, just in case:
Re-link our executable. Notice we do not need the -L option since our library is stored in a default location and we are not using the rpath option:
Let us make sure we are using the /usr/lib instance of our library using ldd:
Good, now let us run it:
That about wraps it up. We have covered how to build a shared library, how to link with it, and how to resolve the most common loader issues with shared libraries — as well as the positives and negatives of different approaches.
- It looks in the DT_RPATH section of the executable, unless there is a DT_RUNPATH section.
- It looks in LD_LIBRARY_PATH. This is skipped if the executable is setuid/setgid for security reasons.
- It looks in the DT_RUNPATH section of the executable unless the setuid/setgid bits are set (for security reasons).
- It looks in the cache file /etc/ld/so/cache (disabled with the -z nodeflib linker option).
- It looks in the default directories /lib then /usr/lib (disabled with the -z nodeflib linker option).
What is position independent code? PIC is code that works no matter where in memory it is placed. Because several different programs can all use one instance of your shared library, the library cannot store things at fixed addresses, since the location of that library in memory will vary from program to program. ↩
GCC first searches for libraries in /usr/local/lib, then in /usr/lib. Following that, it searches for libraries in the directories specified by the -L parameter, in the order specified on the command line. ↩
Источник