Linux маршрутизация между двумя интерфейсами

Настройка сетевой маршрутизации Linux – команда route

Для определения и задания маршрутов в сетях существуют динамическая и статическая маршрутизации. В первом случае маршруты задаются специальным демоном маршрутизации, который модифицирует соответствующим образом таблицу маршрутизации ядра. Во втором случае маршруты задаются администратором/пользователем при помощи команды route. Маршруты, заданные командой route не изменяются, даже если включена динамическая маршрутизация.

Как работает маршрутизация?

Прежде всего нужно понимать, что процессы маршрутизации осуществляются на сетевом уровне. Для каждого пакета проводится сравнение его целевого IP-адреса с записями в таблице маршрутизации. Когда обнаруживается хотя бы частичное соответствие с одним из шлюзов в таблице, пакет направляется к следующему узлу (шлюзу), соответствующему найденному маршруту. И здесь может возникать несколько ситуаций:

Первая — когда, например, пакет адресуется компьютеру, находящемуся в той же сети, что и источник пакета, а точнее сказать — его отправитель. В данной ситуации для такого пакета следующим шлюзом является один из локальных интерфейсов и он (пакет) отправляется сразу к адресату. Такие «явные» и «короткие» шлюзы обычно задаются во время конфигурирования сетевых интерфейсов — командой ifconfig.

Вторая — когда адрес назначения пакта не соответствует ни одному шлюзу в таблице маршрутизации. В таком случае, во избежание коллизий в сети и её чрезмерной нагрузки должен быть задействован шлюз по-умолчанию. Другими словами, это такой маршрут, который указывает системному ядру: все остальные пакеты (без соответствий в таблице маршрутов) направляй сюда. Если шлюз по-умолчанию не будет предусмотрен, то отправляющей стороне посылается сообщение о недостижимости сети или узла.

Как правило, локальные сети имеют единственный шлюз во внешнюю среду, например в Интернет. В свою очередь, в сети Интернет таких «стандартных маршрутов» не существует.

Синтаксис и основные опции

Основное назначение команды route – добавление и удаление сетевых маршрутов для системного ядра, а также просмотр содержимого таблицы маршрутизации. Эта команда, хотя и работает в разных UNIX-подобных системах одинаково, однако имеет резко отличающийся синтаксис в зависимости от используемой системы.

В общем случае прототипом команды route является следующая запись:

Эта команда добавит шлюз с обратной связью через виртуальное устройство lo, которое используется для этой цели в Linux-системах. Опции -net и -host используются для указания адреса, характеризующего либо сеть, либо узел соответственно как пункты назначения. Для определения подсети служит опция netmask, для задания приоритета шлюза — опция metric. Сетевой интерфейс обозначается опцией dev. Кроме описанных выше для команды route также существуют и другие используемые ей опции, которые приведены в следующей таблице:

Опция

Назначение

Шлюз, через который должны достигаться сеть или узел. Задаётся в виде имени узла или точечной записи адреса.

Устанавливает значение MTU (максимальную величину пакета) в байтах.

Устанавливает размер TCP-окна для задаваемого шлюза в байтах. Обычно используется в сетях AX.25.

Устанавливает начальное время отклика для TCP-соединений по данному маршруту в миллисекундах.

Задаёт блокирующий маршрут, который должен приводить к остановке процедуры поиска маршрутов. Полезно при скрытии сетей для использования в них шлюз по-умолчанию.

Заставляет работать с таблицей маршрутизации ядра. Эта опция в большинстве систем используется по-умолчанию, поэтому часто опускается.

Заставляет работать с кэшем маршрутизации ядра.

Включает подробный режим работы команды route.

Использование числового формата адресов вместо попыток определения символьных наименований узлов. Можно использовать в случае определения проблем с соединениями к DNS.

Читайте также:  Windows домашняя базовая отличия

Использовать формат вывода команды netstat для отображения содержимого таблицы маршрутов. Опция -ee сгенерирует самый подробный отчёт с полными наименованиями параметров таблицы маршрутов.

Примеры использования

Определить маршрут к сети, которая должна быть достигнута через сетевой интерфейс eth0:

Здесь для команды route не указывается сам интерфейс, поскольку предполагается, что узлу nodeone соответствует адрес 192.168.1.2. Далее, route «узнаёт», что маршрут нужно проложить именно через eth0 благодаря тому, что системное ядро анализирует все доступные интерфейсы на предмет их конфигурации и сравнивает адрес пункта назначения с сетевой частью сетевых (сконфигурированных) интерфейсов. В данном случае ядро обнаруживает, что eth0 – тот интерфейс (с адресом 192.168.1.2), которому соответствует конечный адрес, т. е. 192.168.1.0.

Задание шлюза по-умолчанию:

Доступ в локальную сеть Ethernet через сетевой интерфейс eth0:

Здесь 192.168.10.0 – сеть, к которой нужно установить доступ (маршрут).

Вывод содержимого таблицы маршрутов ядра осуществляется командой route без параметров, для подробных результатов используется опция -ee.

Также можно использовать сокращённую запись для задания маски подсети:

Следует отметить, что шлюзы, установленные командой route будут существовать до перезагрузки системы. Для их использования на постоянной основе необходимо нужные команды прописать в файле. В Ubuntu это /etc/network/interfaces.

Например для настройки маршрутизации сети 192.168.10.0/24 через шлюз 192.168.10.1 интерфейс eth0, это команда

$ route add -net 192.168.10.0/24 gw 192.168.10.1 eth0

файл /etc/network/interfaces будет выглядеть следующим образом

В Centos/Redhat это файл /etc/sysconfig/network-scripts/route-eth0 для интерфейса eth0 если же название интерфейса другое, то название файла будет route- . Если этого файла нет, то его нужно создать. Для настройки выше указанного примера, добавьте в файл следующие строки

Также можно прописать и несколько дополнительных маршрутов, для этого просто указываем их в новой строке. После чего сохраняем файл и рестартуем сетевую службу

Если вы нашли ошибку, пожалуйста, выделите фрагмент текста и нажмите Ctrl+Enter.

Источник

Маршрутизация в Linux

Материал из Xgu.ru

Linux предоставляет большой набор функций для маршрутизации и инструменты для ее настройки. Ядро 2.6.x поддерживает:

  • Простую статическую маршрутизацию.
  • Equal Cost Multi Path маршруты (маршруты до одной сети с одинаковым весом, которые выбираются с равной вероятностью).
  • Blackhole-маршруты.
  • Множественные таблицы маршрутизации.
  • Policy Based Routing

Содержание

[править] Команды

Для управления маршрутизацией применяются следующие команды: route, netstat, ip (последняя из пакета iproute2, возможно его придется установить).

Просмотреть таблицу можно следующими способами:

При этом следует учитывать, что доступ ко всем возможностям дает только ip. Используя route вы не только не сможете настроить «продвинутые» функции вроде политик маршрутизации, но и не увидите их существование в выводе команды просмотра, если они уже настроены в системе. Поэтому следует по возможности использовать ip.

Модификация таблицы маршрутизации:

[править] Использование route

[править] Использование ip

Синтаксис ip по структуре напоминает синтаксис Cisco IOS. Любые опции могут быть сокращены до потери двусмысленности, например «ip ro ad» вместо «ip route add».

Командой вида ip route add blackhole 10.56.50.0/27 можно добавить «зануленный» маршрут (аналог «ip route . null0» в Cisco). Пакеты в сеть с таким маршрутом будут удалены с причиной «No route to host». Может быть полезно для подавление DoS-атаки с хоста или иных подобных случаев.

[править] Действия с маршрутами

Кроме add также поддерживаются и другие действия:

  • del — удалить маршрут.
  • replace — заменить маршрут другим.
  • change — изменить параметры маршрута.

[править] Equal Cost Multi Path

Если добавить два маршрута до одной и той же сети с одинаковой метрикой, ядро начнет распределять нагрузку между ними путем выбора того или другого с равной вероятностью. Работает и для более чем двух маршрутов. Предупреждение: это может вызвать проблемы со входящими соединениями, потому что иногда ответ может пойти по другому маршруту, чем пришел запрос. Будьте осторожны.

[править] IPv6

Настройка маршрутизации IPv6 почти идентична настройке для IPv4.

В некоторых дистрибутивах еще есть нерешенная проблема с маршрутом по умолчанию (например, старые версии RHEL), используйте

[править] Просмотр маршрутов до определенной сети

На маршрутизаторах с длинной таблицей может быть неудобно просматривать вывод «ip route show» в поисках нужного маршрута. В этом случае можно использовать команду вида:

которая выведет маршруты только до указанной сети.

[править] Пересылка пакетов между интерфейсами

Linux позволяет разрешить или запретить пересылку пакетов между интерфейсами (forwarding). На рабочих станциях и серверах приложений ее можно запретить, на маршрутизаторах или межсетевых экранах она, очевидно, должна быть разрешена.

За этот параметр для IPv4 отвечает переменная net.ipv4.ip_forward (1 = «разрешить», 0 = «запретить»).

Для IPv6 используйте net.ipv6.conf.all.forwarding

Чтобы настройки сохранились после перезагрузки, пропишите значения net.ipv4.ip_forward и net.ipv6.conf.all.forwarding в /etc/sysctl.conf.

[править] Конфигурационные файлы

Настройки статической маршрутизации находятся в различных файлах, в зависимости от дистрибутива.

  • Debian GNU/Linux: /etc/network/interfaces
  • RHEL/CentOS/Scientifix: etc/sysconfig/network-scripts/route-
  • Gentoo: /etc/conf.d/net

(добавьте свои дистрибутивы, пожалуйста)

[править] Policy routing

Для хоста 192.168.1.1 используется особенная таблица маршрутизации (table 3), не такая как для всех остальных хостов. В ней указан единственный маршрут — маршрут по умолчанию.

Все будут ходить через шлюз 10.0.1.2, а 192.168.1.1 — через 10.0.3.4.

Источник

Маршрутизация в Linux: VRF Lite

Типы маршрутов, таблицы маршрутизации и PBR в Linux

Прежде чем понять суть происходящего, познакомимся с некоторыми отличительными чертами сетевого стека Linux.

Первый отличительный момент — это специальные типы маршрутов. Когда ip-пакет приходит с какого-нибудь интерфейса, надо определить, адресован ли он этому хосту, или другому. Определяется это довольно элегантно — просто для адреса назначения ищется нужный маршрут в таблицах маршрутизации. Если пакет попадает на маршрут типа «local», значит он адресован непосредственно хосту, если нет, то значит его надо маршрутизировать дальше (при этом дальнейший маршрут уже известен) или сделать что-то ещё, в зависимости от типа маршрутов.

На данный момент поддерживается несколько типов маршрутов (подробнее о них можно посмотреть в мане ip-route, если пишет, что такого мана нет, то обновите пакет iproute на более свежий). Нас в данный момент интересуют только маршруты следующих типов:

  • unicast — обычный маршрут. Ничего интересного.
  • local — адрес назначения находится на данном хосте. После того, как выяснится, что пакет попадает на этот маршрут, будет производиться поиск подходящего сокета для него.
  • broadcast — широковещательный маршрут. Для входящих пакетов, попадающих на этот маршрут, практически нет отличий от маршрута local, за исключением дополнительных проверок на игнорирование широковещательных пакетов. Для исходящих же есть небольшое отличие: в заголовке канального уровня так же выставляется широковещательный адрес назначения при использовании широковещательных сетей.
  • unreachable — запрещающий маршрут. Для пакетов, попадающий на этот маршрут будет отослан отправителю icmp-пакет с сообщением о недоступности.
  • prohibit — подобен типу unreachable, только сообщение другое будет отправлено.
  • blackhole — пакет на этом маршруте будет молча отброшен

Таким образом, для маршрутизации транзитных пакетов нам достаточно наличия маршрута типа unicast, а для того, чтобы хост мог отвечать на пакеты, нужны ещё маршруты типов local и, опционально, broadcast. Ещё следует учесть то, что нам также нужны маршруты direct-connected сетей для того, чтобы обеспечить связность с соседними маршрутизаторами.

Маршруты сгруппированы в таблицы маршрутизации. По-умолчанию изначально в системе присутствуют три таблицы:

  • local (255) — в этой таблице находятся локальные и широковещательные маршруты. Эта таблица обслуживается автоматически и генерируется на основе адресов, назначенных интерфейсам.
  • main (254) — основная таблица маршрутизации. Автоматически в неё добавляются direct-connected маршруты. Так же если в параметрах утилиты ip не указана таблица маршрутизации, то подразумевается таблица main.
  • default (253) — таблица для маршрутов по-умолчанию. Её использование не прижилось и поэтому она, как правило, пустует всё время.

Имена таблиц хранятся в файле /etc/iproute2/rt_tables. Под номер таблицы отдано 32 бита, но максимальное количество таблиц в данный момент жёстко ограничено числом 256. Как добавлять/удалять/редактировать маршруты можно почитать в мане к ip-route.

Таблица, в которой надо искать маршруты, определяется политиками маршрутизации. Эта технология называется Policy Based Routing — маршрутизация на основе политик. Суть её в том, что основываясь на каких-либо критериях сетевого пакета мы либо выбираем таблицу, в которой надо искать маршрут, либо определяем действие, которое надо выполнить над пакетом. Каждая политика имеет номер (он может быть даже не уникальным), он же определяем приоритет. Просмотр политик осуществляется в порядке возрастания их приоритетов. Новые политики добавляются перед существующими.

На данный момент «критериями» политики являются

  • адреса источника и/или назначения
  • значение поля tos
  • интерфейс, с которого получен пакет
  • интерфейс, к которому привязан сокет
  • метка файерволла

Каждая политика имеет тип, который определяет действие над пакетом, если он под неё попадает:

  • unicast — используется по-умолчанию, при этом будет производиться поиск маршрута в заданной таблице маршрутизации.
  • blackhole/prohibit/unreachable — по действиям аналогичны соответствующим типам маршрутов.
  • nat — трансляция адресов без учёта состояний, практически не используется.
Запираем маршруты в таблицу

Теперь небольшой практический пример после скучного введения. Для начала, мы реализуем схему с vrf-lite вручную, а затем уже усложним пример динамической маршрутизацией.

Допустим, у нас есть вот такая схема:

Задача состоит в том, чтобы изолировать трафик различного «цвета» друг от друга. При этом адресные пространства цветов могут пересекаться, что делает задачу ещё более интересной. Неформально сформулируем цель: сделать так, чтобы пакеты каждого цвета не уходили за пределы своей таблицы маршрутизации и передавались только по интерфейсам своего цвета.

Для этого для каждого цвета создадим свою таблицу маршрутизации, и для удобства дадим им имя. Затем, добавим в таблицы direct-connected маршруты принадлежащих цвету интерфейсов. И в конце, добавим политики маршрутизации, чтобы пакеты использовали только свою таблицу.

Сначала назначаем интерфейсам адреса. При этом подключенные маршруты будут попадать в таблицу main, а локальные и широковещательные — в таблицу local.

Добавляем для удобства имена таблиц маршрутизации.

Добавляем прямые маршруты в соответствующие таблицы. Нужны это для того, чтобы нам были доступны соседние маршрутизаторы.

Добавляем остальные маршруты.

Есть один нюанс: что будет, если пакет одного цвета не находит маршрута в своей таблице? Значит, будет продолжен поиск маршрута в других таблицах, что для нас не очень хорошо. Чтобы «запереть» пакет в пределах своего цвета, мы можем в каждую изолированную таблицу добавить маршрут по-умолчанию (либо юникастовый, либо запрещающий), либо после каждой политики поиска маршрута в пределах цвета добавить запрещающую политику. Сделаем для одного цвета первый вариант, а для другого — второй.

Так же, желательно перенести все маршруты local и broadcast из таблицы local в таблицы соответствующих цветов, чтобы невозможно было обращаться к локальным интерфейсам маршрутизатора из «чужого» цвета. Для этого лучше всего написать какой-нибудь скрипт, чтобы было не так утомительно.

В итоге, наши таблицы маршрутизации и политики будут выглядеть примерно так:

Собранный в GNS3 стенд показал правильность работы схемы. При обращении к чужому цвету, отправитель получает сообщение о недоступности точки назначения, как и было задумано.

На этом пока всё, но продолжение следует. В нём постараюсь рассказать про динамическую маршрутизацию применительно к vrf с помощью демона маршрутизации bird, и обмен маршрутами между таблицами (vrf leaking).

Источник

Читайте также:  Most used mac os
Оцените статью