Linux ограничить скорость интерфейса

Ограничение пропускной способности сетевого соединения в Linux

Оригинал: How to limit network bandwidth on Linux
Автор: Dan Nanni
Дата публикации: 26 января 2016 г.
Перевод: А. Панин
Дата перевода: 23 мая 2016 г.

Если в процессе работы с вашей системой Linux для настольных компьютеров вы нередко одновременно используете множество работающих с сетью приложений или разделяете пропускную способность своего домашнего сетевого соединения между несколькими компьютерами, вы наверняка хотите максимально контролировать использование ресурсов имеющегося сетевого соединения. В противном случае при загрузке файлов большого объема с помощью специализированного приложения ваша интерактивная сессия SSH может начать работать с большим замедлением или перестать работать вообще. Либо в процессе синхронизации директории большого объема с сервером Dropbox ваши домашние могут начать жаловаться на постоянные перерывы, возникающие в процессе просмотра видео из сети.

В данном руководстве я постараюсь описать два различных подхода к ограничению пропускной способности сетевого соединения в Linux.

Ограничение пропускной способности сетевого соединения на уровне приложения в Linux

Одним из инструментов для ограничения пропускной способности сетевого соединения, использующим интерфейс командной строки системы, является утилита под названием trickle . Trickle позволяет осуществлять шейпинг трафика, генерируемого любым из существующих приложений, путем «подгрузки» библиотеки с реализацией механизма сетевых сокетов и алгоритмов ограничения пропускной способности сетевого соединения в процессе запуска приложения. Преимущество утилиты trickle заключается в том, что она функционирует исключительно в пространстве пользователя, поэтому вам не понадобятся привилегии пользователя root для ограничения пропускной способности сетевого соединения на уровне какого-либо из приложений. Для совместимости с утилитой trickle приложение должно использовать интерфейс сетевых сокетов без статического связывания с соответствующей системной библиотекой. Утилита trickle может оказаться полезной тогда, когда вам нужно ограничить пропускную способность сетевого соединения на уровне приложения, которое не имеет аналогичного встроенного механизма.

Для установки trickle в Ubuntu, Debian и производных дистрибутивах следует использовать следующую команду:

Для установки trickle в дистрибутивах Fedora или CentOS/RHEL (с подключенным репозиторием EPEL) следует использовать следующую команду:

Утилита trickle используется следующим образом. Необходимо просто разместить вызов trickle (а также флаги и значения лимитов скоростей) перед командой, которую вы желаете исполнить.

С помощью данной команды устанавливаются заданные лимиты скоростей приема и передачи данных (в КБ/с) для приложения, запускаемого с помощью заданной команды.

Например, для установки ограничения максимальной скорости передачи данных для утилиты scp, равного 100 КБ/с, может использоваться следующая команда:

При желании вы можете установить ограничение максимальной скорости приема данных (равное, к примеру, 300 КБ/с) для вашего веб-браузера Firefox, создав специальный файл запуска приложения со следующей командой запуска:

Наконец, утилита trickle может запускаться в режиме демона и контролировать «общую» пропускную способность сетевого соединения для всех приложений, которые были запущены с помощью нее. Для запуска trickle в режиме демона (т.е., trickled) может использоваться следующая команда:

После того, как демон trickled начнет работу в фоновом режиме, вы можете запускать другие приложения с помощью утилиты trickle. Теперь, если вы запустите с помощью утилиты trickle одно приложение, его скорость приема данных будет ограничиваться 1000 КБ/с. Если же вы запустите с помощью утилиты trickle еще одно приложение, скорость приема данных каждого из этих приложений будет ограничиваться 500 КБ/с и так далее…

Ограничение пропускной способности сетевого соединения на уровне сетевого интерфейса в Linux

Еще один способ управления пропускной способностью вашего сетевого соединения заключается в установке лимитов скоростей приема и передачи данных на уровне сетевого интерфейса. Данный подход может оказаться полезным тогда, когда вы делите соединение с сетью Интернет с кем-либо еще. Как и в подавляющем большинстве случаев, в Linux есть необходимый для этого инструмент. Сценарий wondershaper предназначен для выполнения описанной задачи: он ограничивает пропускную способность сетевого соединения на уровне сетевого интерфейса.

На самом деле, wondershaper является простым сценарием командной оболочки, который использует утилиту tc для установки параметров шейпинга трафика и качества сетевого соединения на уровне заданного сетевого интерфейса. Шейпинг исходящего трафика осуществляется путем распределения пакетов по очередям с разными приоритетами, шейпинг входящего трафика — путем отбрасывания пакетов.

Фактически, список полезных функций сценария wondershaper не ограничивался добавлением возможности управления пропускной способностью для каждого из сетевых интерфейсов. Wondershaper также пытается максимально снизить задержки интерактивных сессий, таких, как SSH в процессе загрузки или передачи файлов больших объемов. Кроме того, он гарантирует, что при передаче файлов больших объемов (например, при синхронизации директорий с сервером Dropbox) не будет значительно снижаться скорость загрузки файлов и наоборот.

Для установки wondershaper в Ubuntu, Debian и производных дистрибутивах следует использовать следующую команду:

Для установки wondershaper в дистрибутиве Fedora или CentOS/RHEL (с подключенным репозиторием EPEL) следует использовать следующую команду:

Сценарий wondershaper используется следующим образом:

Например, для установки максимальных скоростей приема/передачи данных для сетевого интерфейса eth0, равных 1000 и 500 Кб/с соответственно, может использоваться следующая команда:

Вы можете удалить установленное ограничение пропускной способности сетевого интерфейса с помощью следующей команды:

Если вас интересует принцип работы сценария wondershaper, вы можете изучить его содержимое (/sbin/wondershaper).

Заключение

В данном руководстве я рассказал о двух различных вариантах ограничения пропускной способности сетевого соединения в системе Linux для настольных компьютеров, а именно, об ограничении пропускной способности сетевого соединения на уровне отдельных приложений и на уровне сетевых интерфейсов. Оба рассмотренных инструмента являются максимально простыми и позволяют быстро и просто организовать шейпинг ранее никоим образом не контролируемого сетевого трафика. Те из вас, кто желает узнать больше о способах ограничения пропускной способности сетевых соединений в Linux, могут ознакомиться со следующим руководством .

Читайте также:  Где находится принтер windows 10

Источник

Ограничиваем входящий и исходящий трафик в Linux

В данной статье хочу рассказать, как я строил систему ограничения входящего и исходящего трафика в Linux.
Как и учет трафика, ограничение полосы пропускания в сети является очень важной задачей, хотя первое с каждым годом всё быстрее отходит на второй план, шейпинг трафика остается необходимой задачей каждого системного/сетевого администратора.

Какие есть способы ограничения трафика?

Для того, чтобы ответить на этот вопрос нужно определиться для чего этот трафик ограничивать вообще.
Взяв за основу мою сеть из, примерно, 50 рабочих мест, которые выходят в интернет через шлюз, под управлением ОС Ubuntu и некоторые из пользователей пользуются локальными ресурсами на этом сервере по протоколу SMB.
Моя цель ограничить пользователям скорость передачи данных в Интернет со справедливым разделением полосы пропускания между ними.

Исходя из моих задач, для ограничения полосы пропускания можно использовать следующие методы:
1. Ограничение с помощью прокси-сервера Squid.
Данный метод позволяет довольно гибко контролировать весь www,ftp трафик пользователей с возможностью гибкого ограничения скорости пропускания.
2. Использование traffic control из iproute2.
Очень гибкий и оптимальный метод ограничения трафика, но не предоставляющий контроля над WWW трафиком, как в предыдущем методе.
3. Конечно возможно ограничить скорость путём использования модуля –m limit для iptables – но считаю это неприемлемым.

В общем я решил остановиться на методе ограничения трафика с помощью пакета iproute2.

Как уже упоминал, я использую сервер: OS Ubuntu 10.04, ядро 2.6.32-30. В сервере 3 интерфейса: eth0 – внутренняя сеть, eth1 — провайдер 1, eth2 – провайдер 2.

Задача: ограничить скорость входящего и исходящего трафика пользователей с приоритезацией трафика по классам, исходя из некоторых условий. Локальный трафик не ограничивать.

Представим ситуацию, когда пользователь установил соединение с youtube.com и смотрит какой-нибудь ролик в HD-качестве. Основная часть трафика направляется от сервера, в данном случае youtube.com к пользователю. Учитывая, что весь трафик проходит через наш шлюз, мы можем повлиять на скорость передачи этого трафика путем установки шейпера трафика на интерфейсе внутренней сети.
Похожая ситуация происходит, когда пользователь загружает фотоотчет о проведенном отпуске, состоящий из 300 фотографий в разрешении 5000х3500 пикселей на какой-нибудь сервис хранения фотографий в интернете.

Естественно, что при отсутствии системы ограничения трафика этот пользователь займёт весь канал и остальным пользователям не будет предоставлена нормальная скорость работы с Интернет. Но мы не может ограничить скорость отправки данных пользователем на внешнем интерфейсе сервера, т.к. для доступа пользователей в Интернет используется NAT, а, учитывая, что шейпинг трафика выполняется после преобразования адресов, то на внешнем интерфейсе сервера уже не будет пакетов с внутренними адресами сети.

Для решения проблемы ограничения исходящего от клиента трафика я использовал устройство IFB, на которое перенаправлял весь исходящий от клиента трафик.

В теории управления трафиком мы можем ограничивать только исходящий трафик. Следовательно, трафик, который направляется к пользователю внутренней сети, будет исходящим относительно внутреннего интерфейса eth0, а трафик, направляющийся от пользователя внутренней сети – исходящим относительно внешнего интерфейса eth1.

Исходя из вышеизложенного, я ограничивал входящий к пользователю трафик на интерфейсе внутренней сети — eth0, а исходящий от пользователя трафик – на виртуальном интерфейсе ifb0.

Для того чтобы во время занятия пользователем всей полосы пропускания, ограниченной ему на шлюзе, для скачивания какого-нибудь большого объема данных и при этом мог нормально пользоваться ssh и чтобы у него работал ping – я использовал приоритезацию трафика.

Я расставил следующие приоритеты трафика:

  1. icmp
  2. udp,ssh
  3. tcp sport 80
  4. остальной неклассифицированный трафик

Чем ниже параметр – тем выше приоритет трафика.

Дисциплины, классы, фильтры

Как уже было мной отмечено, входящий к пользователям трафик будет ограничиваться на интерфейсе eth0, а исходящий от пользователей – на виртуальном интерфейсе ifb0.

Для инициализации интерфейса ifb0 нужно сначала загрузить модуль управления интерфейсом:
/sbin/modprobe ifb
После успешной загрузки модуля нужно включить интерфейс:
/sbin/ip link set dev ifb0 up
Затем, после того, как интерфейс будет поднят, нужно организовать переадресацию всего исходящего трафика от пользователей на этот интерфейс:
/sbin/tc qdisc add dev eth0 ingress
/sbin/tc filter add dev eth0 parent ffff: protocol ip u32 match u32 0 0 action mirred egress redirect dev ifb0
Теперь можно смело начинать строить классы и фильтры для входящего к пользователям трафика на интерфейсе eth0, а исходящего – на интерфейсе ifb0.

Для ограничения трафика используется следующий принцип:

  1. На интерфейсе создается, так называемый корневой обработчик очереди
  2. К этой дисциплине прикрепляется класс, который одержит информацию о максимальной пропускной способности данных, которые в этот класс попадут
  3. Добавляется фильтр, который, с помощью определенных параметров, относит каждый пакет к тому или иному классу

Классы могут быть вложенными. То есть, если класс 1: описывает максимальную пропускную способность в 1Мбит, то класс 1:1, который является его подклассом, не может превысить ограничения по скорости его родителя.

Ограничиваем входящий к пользователям трафик

Все манипуляции с трафиком будем проводить на интерфейсе eth0.

Для начала создадим корневой обработчик очереди на интерфейсе:
/sbin/tc qdisc add dev eth0 root handle 1: htb default 900

Тем самым мы привязали корневой обработчик очереди к интерфейсу eth0, присвоили ему номер 1: и указали на использование планировщика HTB с отправкой всего неклассифицированного трафика в класс с номером 900.

Затем создадим дочерний класс 1:1 с шириной канала, равной скорости интерфейса:
/sbin/tc class add dev eth0 parent 1: classid 1:1 htb rate 100Mbit burst 15k
Все последующие классы будут подклассами только что созданного нами класса. Это дает нам более точную приоритезацию и обработку скорости потока данных.

Читайте также:  Nmap �� �������� kali linux

Создадим класс для локального трафика, адресом назначения или исходным адресом которого будет являться внутренний адрес сервера. Это нужно для удобства пользования ресурсами сервера, такими как SSH, SMB, FTP, WWW и так далее. Скорость, описанная классом – 50Mbit, но в случае, если скорость потока родительского класса не меньше 100Mbit, то разрешаем использовать 80Mbit, в качестве максимальной скорости передачи данных.
/sbin/tc class add dev eth0 parent 1:1 classid 1:10 htb rate 50Mbit ceil 80Mbit burst 15k

Далее создаем класс, скорость которого будет равно ширине полосы пропускания, которую нам предоставляет провайдер. В моем случае – это 15Mbit.
/sbin/tc class add dev eth0 parent 1:1 classid 1:100 htb rate 15Mbit burst 15k

Даже если провайдер предоставляет большую скорость, к примеру 18Mbit, я рекомендую снижать эту скорость для шейпера на 1-2 Mbit для более «мягкого» ограничения трафика.
Далее создадим класс, в который будут отправляться все пакеты данных, которые не попадут ни в один из созданных ранее классов.
/sbin/tc class add dev eth0 parent 1:1 classid 1:900 htb rate 56Kbit ceil 128Kbit

Для каждого пользователя я создавал отдельный подкласс, с выделенной полосой пропускания, а затем создавал подклассы этого класса для приоритезации трафика:
/sbin/tc class add dev eth0 parent 1:100 classid 1:101 htb rate 4Mbit ceil 6Mbit

Данной командой мы указали на создание класса с номером 1:101, который является подклассом класса с номером 1:100 и указали пропускную способность класса в 4Mbit, а в случае свободной полосу пропускания у родительского класса, разрешить максимальное прохождение данных по классу на скорости 6Mbit.

Далее создаем подклассы для приоритезации трафика:
# PRIO 1 -> icmp traffic — самый низкий приоритет
/sbin/tc class add dev eth0 parent 1:101 classid 1:102 htb rate 33kbit ceil 6Mbit prio 1
# PRIO 2 -> udp, ssh
/sbin/tc class add dev eth0 parent 1:101 classid 1:103 htb rate 33kbit ceil 6Mbit prio 2
# PRIO 3 -> tcp sport 80 – WWW трафик из мира
/sbin/tc class add dev eth0 parent 1:101 classid 1:104 htb rate 33kbit ceil 6Mbit prio 3
# PRIO 4 -> unclassified traffic – трафик, который не попал под условия, указанные в предыдущих классах
/sbin/tc class add dev eth0 parent 1:101 classid 1:105 htb rate 33kbit ceil 6Mbit prio 4

После создания классов пришло время создания фильтров, которые будут классифицировать трафик по определенным критериям.

Есть несколько способов классифицировать трафик.
Самые удобные из них – это u32 классификаторы, позволяющие классифицировать пакеты исходя из адреса назначения или отправителя, используемого протокола, номера порта и так далее, и классификаторы на основе меток iptables. Для использования последних необходимо сначала маркировать пакеты при помощи iptables в цепочке PREROUTING, на основе каких-либо условий, а затем при помощи tc направлять пакеты с соответствующей меткой в нужные классы.

Я предпочел использовать u32 классификатор.

Присваиваем icmp-трафику самый низкий приоритет и отправляем его в класс 1:102
/sbin/tc filter add dev eth0 protocol ip parent 1:0 prio 1 u32 match ip dst 192.168.10.78 \
match ip protocol 1 0xff flowid 1:102

UDP и SSH трафик отправляем в класс 1:103
/sbin/tc filter add dev eth0 protocol ip parent 1:0 prio 2 u32 match ip dst 192.168.10.78 \
match ip protocol 17 0xff flowid 1:103
/sbin/tc filter add dev eth0 protocol ip parent 1:0 prio 2 u32 match ip dst 192.168.10.78 \
match ip protocol 6 0xff match ip sport 22 0xffff flowid 1:103

WWW-трафик, пришедший с tcp-порта 80 отправляем в класс 1:104
/sbin/tc filter add dev eth0 protocol ip parent 1:0 prio 3 u32 match ip dst 192.168.10.78 \
match ip protocol 6 0xff match ip sport 80 0xffff flowid 1:104

Трафик, не соответствующий ни одному из условий отправляем в класс 1:105
/sbin/tc filter add dev eth0 protocol ip parent 1:0 prio 4 u32 match ip dst 192.168.10.78 flowid 1:105

Приоритезация работает по такому принципу, что каждому классу выделяется по минимальной полосе пропускания с возможностью заимствования у родительского класса максимальной полосы пропускания, в зависимости от приоритета трафика, поэтому, если класс будет забит WWW-трафиком с tcp-порта 80, при прохождении icmp пакета с более низким приоритетом, чем у WWW-трафика, он будет пропущен вне очереди, учитывая его приоритет.

Ограничиваем исходящий трафик

Для ограничения исходящего от пользователей трафика выполняются такие же действия как и для входящего, только в ход идет виртуальный интерфейс ifb0. Также нужно изменить назначение следования трафика: вместо dst 192.168.10.78 – нужно указать src 192.168.10.78 соответственно.

Автоматизация и принцип работы скриптов

Для начала, для автоматизации процесса ограничения скорости нужно создать файл, в котором будет перечислены адреса пользователей, для которых нужно устанавливать ограничения с указанием этих ограничений.

Файл представляет из себя поля, разделенный знаком табуляции либо пробелом со следующими значениями:
CLIENT – Имя пользователя. Нужно для удобства предоставления данных
IP – адрес пользователя в сети
DOWN – скорость потока данных к пользователю
CEIL – максимальная скорость входящего трафика к пользователю при доступности данной полосы у родительского класса
UP — скорость потока данных от пользователя
CEIL – то же, что и у CEIL для входящего трафика к пользователю
PROVIDER – какой из провайдеров используется для обслуживания запросов пользователя (при наличии нескольких)
ID – номер класса для пользователя. Подробнее о номерах классов ниже.
Также я использую несколько bash-скриптов.

root@steel:/etc/rc.d/shape# cat ./rc.shape

Читайте также:  Смена ttl linux mint

#!/bin/bash
. /etc/init.d/functions
/sbin/modprobe ifb
/sbin/ip link set dev ifb0 up

TC=»/sbin/tc»
DEV_P1_DOWN=»eth0″
DEV_P1_UP=»ifb0″

stop() <
$TC qdisc del dev $DEV_P1_DOWN root
$TC qdisc del dev $DEV_P1_UP root
$TC qdisc del dev $DEV_P1_DOWN ingress
>
start() <
# Удаляем все обработчики на интерфейсе
$TC qdisc del dev $DEV_P1_DOWN root
$TC qdisc del dev $DEV_P1_UP root
$TC qdisc del dev $DEV_P1_DOWN ingress

## Перенаправляем весь исходящий от пользователей трафик на виртуальный интерфейс ifb0
$TC qdisc add dev $DEV_P1_DOWN ingress
$TC filter add dev $DEV_P1_DOWN parent ffff: protocol ip u32 match u32 0 0 action mirred egress redirect dev $DEV_P1_UP

# Подгружаем скрипты с описанием классов входящего и исходящего трафика

# Весь трафик, который следует на шлюз или от него ограничиваем в 50Мбит с максимумом в 80Мбит.
$TC filter add dev $DEV_P1_UP protocol ip parent 1:0 prio 1 u32 match ip dst 10.0.0.1 flowid 1:10
$TC filter add dev $DEV_P1_DOWN protocol ip parent 1:0 prio 1 u32 match ip src 10.0.0.1 flowid 1:10

# Подгружаем скрипт с описанием фильтров
. /etc/rc.d/shape/rc.shape.filters
>

Далее код, который подгружается:

root@steel:/etc/rc.d/shape# cat ./rc.shape.down.classes

#!/bin/bash
## DOWNLOAD CLASSES
##########################################################
# Создаем корневой обработчик очереди
$TC qdisc add dev $DEV_P1_DOWN root handle 1: htb default 900

# Описание классов для входящего к пользователям трафика
$TC class add dev $DEV_P1_DOWN parent 1: classid 1:1 htb rate 100Mbit burst 15k

# Локльный трафик (SERVER -> CLIENTS)
$TC class add dev $DEV_P1_DOWN parent 1:1 classid 1:10 htb rate 50Mbit ceil 80Mbit burst 15k

# Трафик от провайдера (SERVER -> CLIENTS)
$TC class add dev $DEV_P1_DOWN parent 1:1 classid 1:100 htb rate 15Mbit burst 15k

# Неклассифицированный трафик будет отправлен в этот класс (SERVER -> CLIENTS)
$TC class add dev $DEV_P1_DOWN parent 1:1 classid 1:900 htb rate 128Kbit ceil 128Kbit

root@steel:/etc/rc.d/shape# cat ./rc.shape.up.classes
#!/bin/bash

## UPLOAD CLASSES
#############################################################
# Создаем корневой обработчик очереди
$TC qdisc add dev ifb0 root handle 1: htb default 900

# Описание классов для исходящего от пользователей трафика
$TC class add dev ifb0 parent 1: classid 1:1 htb rate 100Mbit burst 15k
# Локальный трафик (CLIENTS -> SERVER)
$TC class add dev $DEV_P1_UP parent 1:1 classid 1:10 htb rate 50Mbit ceil 80Mbit burst 15k

# Трафик к провайдеру (CLIENTS -> SERVER)
$TC class add dev $DEV_P1_UP parent 1:1 classid 1:100 htb rate 5Mbit burst 15k
# Неклассифицированный трафик будет отправлен в этот класс (CLIENTS -> SERVER)
$TC class add dev $DEV_P1_UP parent 1:1 classid 1:900 htb rate 128Kbit ceil 128Kbit

root@steel:/etc/rc.d/shape# cat ./rc.shape.filters
#!/bin/bash
# читаем построчно файл “users”
while read LINE
do
set — $LINE
if [[ $1 =

# создаем отдельный подкласс для пользователя
$TC class add dev $DEV_P1_DOWN parent 1:100 classid 1:$<8>1 htb rate $CLIENT_DOWN_RATE ceil $CLIENT_DOWN_CEIL

# PRIO 1 -> icmp traffic
$TC class add dev $DEV_P1_DOWN parent 1:$<8>1 classid 1:$<8>2 htb rate 33kbit ceil $CLIENT_DOWN_CEIL prio 1

# PRIO 2 -> udp, ssh
$TC class add dev $DEV_P1_DOWN parent 1:$<8>1 classid 1:$<8>3 htb rate 33kbit ceil $CLIENT_DOWN_CEIL prio 2

# PRIO 3 -> tcp sport 80
$TC class add dev $DEV_P1_DOWN parent 1:$<8>1 classid 1:$<8>4 htb rate 33kbit ceil $CLIENT_DOWN_CEIL prio 3

# PRIO 4 -> unclassified traffic
$TC class add dev $DEV_P1_DOWN parent 1:$<8>1 classid 1:$<8>5 htb rate 33kbit ceil $CLIENT_DOWN_CEIL prio 4

# фильтруем icmp-пакеты в ранее созданный нами класс для icmp-трафика с приоритетот 1
$TC filter add dev $DEV_P1_DOWN protocol ip parent 1:0 prio 1 u32 match ip dst $CLIENT_IP \
match ip protocol 1 0xff flowid 1:$<8>2

# фильтрация udp
$TC filter add dev $DEV_P1_DOWN protocol ip parent 1:0 prio 2 u32 match ip dst $CLIENT_IP \
match ip protocol 17 0xff flowid 1:$<8>3
# ssh
$TC filter add dev $DEV_P1_DOWN protocol ip parent 1:0 prio 2 u32 match ip dst $CLIENT_IP \
match ip protocol 6 0xff match ip sport 22 0xffff flowid 1:$<8>3
# WWW, sport 80
$TC filter add dev $DEV_P1_DOWN protocol ip parent 1:0 prio 3 u32 match ip dst $CLIENT_IP \
match ip protocol 6 0xff match ip sport 80 0xffff flowid 1:$<8>4
# самый высокий приоритет – трафику, не попавшему под предыдущие фильтры
$TC filter add dev $DEV_P1_DOWN protocol ip parent 1:0 prio 4 u32 match ip dst $CLIENT_IP flowid 1:$<8>5

### ТАКИЕ ЖЕ ПРАВИЛА И ДЛЯ ИСХОДЯЩЕГО ТРАФИКА

$TC class add dev $DEV_P1_UP parent 1:100 classid 1:$<8>1 htb rate $CLIENT_UP_RATE ceil $CLIENT_UP_CEIL
# PRIO 1 -> icmp traffic
$TC class add dev $DEV_P1_UP parent 1:$<8>1 classid 1:$<8>2 htb rate 1kbit ceil $CLIENT_UP_CEIL prio 1
# PRIO 2 -> udp, ssh
$TC class add dev $DEV_P1_UP parent 1:$<8>1 classid 1:$<8>3 htb rate 1kbit ceil $CLIENT_UP_CEIL prio 2
# PRIO 3 -> unclassified traffic
$TC class add dev $DEV_P1_UP parent 1:$<8>1 classid 1:$<8>4 htb rate 1kbit ceil $CLIENT_UP_CEIL prio 3
$TC filter add dev $DEV_P1_UP protocol ip parent 1:0 prio 1 u32 match ip src $CLIENT_IP \
match ip protocol 1 0xff flowid 1:$<8>2
$TC filter add dev $DEV_P1_UP protocol ip parent 1:0 prio 2 u32 match ip src $CLIENT_IP \
match ip protocol 17 0xff flowid 1:$<8>3
$TC filter add dev $DEV_P1_UP protocol ip parent 1:0 prio 2 u32 match ip src $CLIENT_IP \
match ip protocol 6 0xff match ip dport 22 0xffff flowid 1:$<8>3
$TC filter add dev $DEV_P1_UP protocol ip parent 1:0 prio 3 u32 match ip src $CLIENT_IP flowid 1:$<8>4

Данные скрипты нужно положить в один каталог, Выполнить:

chmod +x ./rc.shape

Я описал один из методов ограничения трафика. Утилита tc – очень мощная вещь в вопросах об ограничениях трафика. Рекомендую ознакомиться с документом: LARTC-HOWTO для более глубокого изучения данного вопроса.

Источник

Оцените статью