Linux set process name

Изучаем процессы в Linux


В этой статье я хотел бы рассказать о том, какой жизненный путь проходят процессы в семействе ОС Linux. В теории и на примерах я рассмотрю как процессы рождаются и умирают, немного расскажу о механике системных вызовов и сигналов.

Данная статья в большей мере рассчитана на новичков в системном программировании и тех, кто просто хочет узнать немного больше о том, как работают процессы в Linux.

Всё написанное ниже справедливо к Debian Linux с ядром 4.15.0.

Содержание

Введение

Системное программное обеспечение взаимодействует с ядром системы посредством специальных функций — системных вызовов. В редких случаях существует альтернативный API, например, procfs или sysfs, выполненные в виде виртуальных файловых систем.

Атрибуты процесса

Процесс в ядре представляется просто как структура с множеством полей (определение структуры можно прочитать здесь).
Но так как статья посвящена системному программированию, а не разработке ядра, то несколько абстрагируемся и просто акцентируем внимание на важных для нас полях процесса:

  • Идентификатор процесса (pid)
  • Открытые файловые дескрипторы (fd)
  • Обработчики сигналов (signal handler)
  • Текущий рабочий каталог (cwd)
  • Переменные окружения (environ)
  • Код возврата

Жизненный цикл процесса

Рождение процесса

Только один процесс в системе рождается особенным способом — init — он порождается непосредственно ядром. Все остальные процессы появляются путём дублирования текущего процесса с помощью системного вызова fork(2) . После выполнения fork(2) получаем два практически идентичных процесса за исключением следующих пунктов:

  1. fork(2) возвращает родителю PID ребёнка, ребёнку возвращается 0;
  2. У ребёнка меняется PPID (Parent Process Id) на PID родителя.

После выполнения fork(2) все ресурсы дочернего процесса — это копия ресурсов родителя. Копировать процесс со всеми выделенными страницами памяти — дело дорогое, поэтому в ядре Linux используется технология Copy-On-Write.
Все страницы памяти родителя помечаются как read-only и становятся доступны и родителю, и ребёнку. Как только один из процессов изменяет данные на определённой странице, эта страница не изменяется, а копируется и изменяется уже копия. Оригинал при этом «отвязывается» от данного процесса. Как только read-only оригинал остаётся «привязанным» к одному процессу, странице вновь назначается статус read-write.

Состояние «готов»

Сразу после выполнения fork(2) переходит в состояние «готов».
Фактически, процесс стоит в очереди и ждёт, когда планировщик (scheduler) в ядре даст процессу выполняться на процессоре.

Состояние «выполняется»

Как только планировщик поставил процесс на выполнение, началось состояние «выполняется». Процесс может выполняться весь предложенный промежуток (квант) времени, а может уступить место другим процессам, воспользовавшись системным вывозом sched_yield .

Перерождение в другую программу

В некоторых программах реализована логика, в которой родительский процесс создает дочерний для решения какой-либо задачи. Ребёнок в данном случае решает какую-то конкретную проблему, а родитель лишь делегирует своим детям задачи. Например, веб-сервер при входящем подключении создаёт ребёнка и передаёт обработку подключения ему.
Однако, если нужно запустить другую программу, то необходимо прибегнуть к системному вызову execve(2) :

или библиотечным вызовам execl(3), execlp(3), execle(3), execv(3), execvp(3), execvpe(3) :

Все из перечисленных вызовов выполняют программу, путь до которой указан в первом аргументе. В случае успеха управление передаётся загруженной программе и в исходную уже не возвращается. При этом у загруженной программы остаются все поля структуры процесса, кроме файловых дескрипторов, помеченных как O_CLOEXEC , они закроются.

Как не путаться во всех этих вызовах и выбирать нужный? Достаточно постичь логику именования:

  • Все вызовы начинаются с exec
  • Пятая буква определяет вид передачи аргументов:
    • l обозначает list, все параметры передаются как arg1, arg2, . NULL
    • v обозначает vector, все параметры передаются в нуль-терминированном массиве;
  • Далее может следовать буква p, которая обозначает path. Если аргумент file начинается с символа, отличного от «/», то указанный file ищется в каталогах, перечисленных в переменной окружения PATH
  • Последней может быть буква e, обозначающая environ. В таких вызовах последним аргументом идёт нуль-терминированный массив нуль-терминированных строк вида key=value — переменные окружения, которые будут переданы новой программе.

Семейство вызовов exec* позволяет запускать скрипты с правами на исполнение и начинающиеся с последовательности шебанг (#!).

Есть соглашение, которое подразумевает, что argv[0] совпадает с нулевым аргументов для функций семейства exec*. Однако, это можно нарушить.

Любопытный читатель может заметить, что в сигнатуре функции int main(int argc, char* argv[]) есть число — количество аргументов, но в семействе функций exec* ничего такого не передаётся. Почему? Потому что при запуске программы управление передаётся не сразу в main. Перед этим выполняются некоторые действия, определённые glibc, в том числе подсчёт argc.

Читайте также:  После обновления mac os catalina не работает word

Состояние «ожидает»

Некоторые системные вызовы могут выполняться долго, например, ввод-вывод. В таких случаях процесс переходит в состояние «ожидает». Как только системный вызов будет выполнен, ядро переведёт процесс в состояние «готов».
В Linux так же существует состояние «ожидает», в котором процесс не реагирует на сигналы прерывания. В этом состоянии процесс становится «неубиваемым», а все пришедшие сигналы встают в очередь до тех пор, пока процесс не выйдет из этого состояния.
Ядро само выбирает, в какое из состояний перевести процесс. Чаще всего в состояние «ожидает (без прерываний)» попадают процессы, которые запрашивают ввод-вывод. Особенно заметно это при использовании удалённого диска (NFS) с не очень быстрым интернетом.

Состояние «остановлен»

В любой момент можно приостановить выполнение процесса, отправив ему сигнал SIGSTOP. Процесс перейдёт в состояние «остановлен» и будет находиться там до тех пор, пока ему не придёт сигнал продолжать работу (SIGCONT) или умереть (SIGKILL). Остальные сигналы будут поставлены в очередь.

Завершение процесса

Ни одна программа не умеет завершаться сама. Они могут лишь попросить систему об этом с помощью системного вызова _exit или быть завершенными системой из-за ошибки. Даже когда возвращаешь число из main() , всё равно неявно вызывается _exit .
Хотя аргумент системного вызова принимает значение типа int, в качестве кода возврата берется лишь младший байт числа.

Состояние «зомби»

Сразу после того, как процесс завершился (неважно, корректно или нет), ядро записывает информацию о том, как завершился процесс и переводит его в состояние «зомби». Иными словами, зомби — это завершившийся процесс, но память о нём всё ещё хранится в ядре.
Более того, это второе состояние, в котором процесс может смело игнорировать сигнал SIGKILL, ведь что мертво не может умереть ещё раз.

Забытье

Код возврата и причина завершения процесса всё ещё хранится в ядре и её нужно оттуда забрать. Для этого можно воспользоваться соответствующими системными вызовами:

Вся информация о завершении процесса влезает в тип данных int. Для получения кода возврата и причины завершения программы используются макросы, описанные в man-странице waitpid(2) .

Передача argv[0] как NULL приводит к падению.

Бывают случаи, при которых родитель завершается раньше, чем ребёнок. В таких случаях родителем ребёнка станет init и он применит вызов wait(2) , когда придёт время.

После того, как родитель забрал информацию о смерти ребёнка, ядро стирает всю информацию о ребёнке, чтобы на его место вскоре пришёл другой процесс.

Благодарности

Спасибо Саше «Al» за редактуру и помощь в оформлении;

Спасибо Саше «Reisse» за понятные ответы на сложные вопросы.

Они стойко перенесли напавшее на меня вдохновение и напавший на них шквал моих вопросов.

Источник

Управление процессами в Linux

Материал этой статьи ни в коем случае не претендует на свою избыточность. Более подробно о процессах вы можете прочитать в книгах, посвященных программированию под UNIX.

Процессы. Системные вызовы fork() и exec(). Нити.

Процесс в Linux (как и в UNIX) — это программа, которая выполняется в отдельном виртуальном адресном пространстве. Когда пользователь регистрируется в системе, автоматически создается процесс, в котором выполняется оболочка (shell), например, /bin/bash.

В Linux поддерживается классическая схема мультипрограммирования. Linux поддерживает параллельное (или квазипараллельного при наличии только одного процессора) выполнение процессов пользователя. Каждый процесс выполняется в собственном виртуальном адресном пространстве, т.е. процессы защищены друг от друга и крах одного процесса никак не повлияет на другие выполняющиеся процессы и на всю систему в целом. Один процесс не может прочитать что-либо из памяти (или записать в нее) другого процесса без «разрешения» на то другого процесса. Санкционированные взаимодействия между процессами допускаются системой.

Ядро предоставляет системные вызовы для создания новых процессов и для управления порожденными процессами. Любая программа может начать выполняться только если другой процесс ее запустит или произойдет какое-то прерывание (например, прерывание внешнего устройства).

В связи с развитием SMP (Symmetric Multiprocessor Architectures) в ядро Linux был внедрен механизм нитей или потоков управления (threads). Нить — это процесс, который выполняется в виртуальной памяти, используемой вместе с другими нитями процесса, который обладает отдельной виртуальной памятью.

Если интерпретатору (shell) встречается команда, соответствующая выполняемому файлу, интерпретатор выполняет ее, начиная с точки входа (entry point). Для С-программ entry point — это функция main. Запущенная программа тоже может создать процесс, т.е. запустить какую-то программу и ее выполнение тоже начнется с функции main.

Читайте также:  Приложение ezviz для linux

Для создания процессов используются два системных вызова: fork() и exec. fork() создает новое адресное пространство, которое полностью идентично адресному пространству основного процесса. После выполнения этого системного вызова мы получаем два абсолютно одинаковых процесса — основной и порожденный. Функция fork() возвращает 0 в порожденном процессе и PID (Process ID — идентификатор порожденного процесса) — в основном. PID — это целое число.
Теперь, когда мы уже создали процесс, мы можем запустить программу с помощью вызова exec. Параметрами функции exec является имя выполняемого файла и, если нужно, параметры, которые будут переданы этой программе. В адресное пространство порожденного с помощью fork() процесса будет загружена новая программа и ее выполнение начнется с точки входа (адрес функции main).

В качестве примера рассмотрим этот фрагмент программы

if (fork()==0) wait(0);
else execl(«ls», «ls», 0); /* порожденный процесс */

Теперь рассмотрим более подробно, что же делается при выполнении вызова fork():

  1. Выделяется память для описателя нового процесса в таблице процессов
  2. Назначается идентификатор процесса PID
  3. Создается логическая копия процесса, который выполняет fork() — полное копирование содержимого виртуальной памяти родительского процесса, копирование составляющих ядерного статического и динамического контекстов процесса-предка
  4. Увеличиваются счетчики открытия файлов (порожденный процесс наследует все открытые файлы родительского процесса).
  5. Возвращается PID в точку возврата из системного вызова в родительском процессе и 0 — в процессе-потомке.

Общая схема управления процессами
Каждый процесс может порождать полностью идентичный процесс с помощью fork(). Родительский процесс может дожидаться окончания выполнения всех своих процессов-потомков с помощью системного вызова wait.
В любой момент времени процесс может изменить содержимое своего образа памяти, используя одну из разновидностей вызова exec. Каждый процесс реагирует на сигналы и, естественно, может установить собственную реакцию на сигналы, производимые операционной системой. Приоритет процесса может быть изменен с помощью системного вызова nice.

Сигнал — способ информирования процесса ядром о происшествии какого-то события. Если возникает несколько однотипных событий, процессу будет подан только один сигнал. Сигнал означает, что произошло событие, но ядро не сообщает сколько таких событий произошло.

Примеры сигналов:

  1. окончание порожденного процесса (например, из-за системного вызова exit (см. ниже))
  2. возникновение исключительной ситуации
  3. сигналы, поступающие от пользователя при нажатии определенных клавиш.

Установить реакцию на поступление сигнала можно с помощью системного вызова signal
func = signal(snum, function);

snum — номер сигнала, а function — адрес функции, которая должна быть выполнена при поступлении указанного сигнала. Возвращаемое значение — адрес функции, которая будет реагировать на поступление сигнала. Вместо function можно указать ноль или единицу. Если был указан ноль, то при поступлении сигнала snum выполнение процесса будет прервано аналогично вызову exit. Если указать единицу, данный сигнал будет проигнорирован, но это возможно не для всех процессов.

С помощью системного вызова kill можно сгенерировать сигналы и передать их другим процессам.
kill(pid, snum);
где pid — идентификатор процесса, а snum — номер сигнала, который будет передан процессу. Обычно kill используется для того, чтобы принудительно завершить («убить») процесс.
Pid состоит из идентификатора группы процессов и идентификатора процесса в группе. Если вместо pid указать нуль, то сигнал snum будет направлен всем процессам, относящимся к данной группе (понятие группы процессов аналогично группе пользователей). В одну группу включаются процессы, имеющие общего предка, идентификатор группы процесса можно изменить с помощью системного вызова setpgrp. Если вместо pid указать -1, ядро передаст сигнал всем процессам, идентификатор пользователя которых равен идентификатору текущего выполнения процесса, который посылает сигнал.

Таблица 1. Номера сигналов

Номер Название Описание
01 SIGHUP Освобождение линии (hangup).
02 SIGINT Прерывание (interrupt).
03 SIGQUIT Выход (quit).
04 SIGILL Некорректная команда (illegal instruction). Не переустанавливается при перехвате.
05 SIGTRAP Трассировочное прерывание (trace trap). Не переустанавливается при перехвате.
06 SIGIOT или SIGABRT Машинная команда IOT.
07 SIGEMT Машинная команда EMT.
08 SIGFPE Исключительная ситуация при выполнении операции с вещественными числами (floating-point exception)
09 SIGKILL Уничтожение процесса (kill). Не перехватывается и не игнорируется.
10 SIGBUS Ошибка шины (bus error).
11 SIGSEGV Некорректное обращение к сегменту памяти (segmentation violation).
12 SIGSYS Некорректный параметр системного вызова (bad argument to system call).
13 SIGPIPE Запись в канал, из которого некому читать (write on a pipe with no one to read it).
14 SIGALRM Будильник
15 SIGTERM Программный сигнал завершения
16 SIGUSR1 Определяемый пользователем сигнал 1
17 SIGUSR2 Определяемый пользователем сигнал 2
18 SIGCLD Завершение порожденного процесса (death of a child).
19 SIGPWR Ошибка питания
22 Регистрация выборочного события
Читайте также:  Heroes 3 hota для mac os

Сигналы (точнее их номера) описаны в файле singnal.h

Для нормального завершение процесса используется вызов
exit(status);
где status — это целое число, возвращаемое процессу-предку для его информирования о причинах завершения процесса-потомка.
Вызов exit может задаваться в любой точке программы, но может быть и неявным, например при выходе из функции main (при программировании на C) оператор return 0 будет воспринят как системный вызов exit(0);

Перенаправление ввода/вывода

Практически все операционные системы обладают механизмом перенаправления ввода/вывода. Linux не является исключением из этого правила. Обычно программы вводят текстовые данные с консоли (терминала) и выводят данные на консоль. При вводе под консолью подразумевается клавиатура, а при выводе — дисплей терминала. Клавиатура и дисплей — это, соответственно, стандартный ввод и вывод (stdin и stdout). Любой ввод/вывод можно интерпретировать как ввод из некоторого файла и вывод в файл. Работа с файлами производится через их дескрипторы. Для организации ввода/вывода в UNIX используются три файла: stdin (дескриптор 1), stdout (2) и stderr(3).

Символ > используется для перенаправления стандартного вывода в файл.
Пример:
$ cat > newfile.txt Стандартный ввод команды cat будет перенаправлен в файл newfile.txt, который будет создан после выполнения этой команды. Если файл с этим именем уже существует, то он будет перезаписан. Нажатие Ctrl + D остановит перенаправление и прерывает выполнение команды cat.

Символ &lt используется для переназначения стандартного ввода команды. Например, при выполнении команды cat > используется для присоединения данных в конец файла (append) стандартного вывода команды. Например, в отличие от случая с символом >, выполнение команды cat >> newfile.txt не перезапишет файл в случае его существования, а добавит данные в его конец.

Символ | используется для перенаправления стандартного вывода одной программы на стандартный ввод другой. Напрмер, ps -ax | grep httpd.

Команды для управления процессами

Предназначена для вывода информации о выполняемых процессах. Данная команда имеет много параметров, о которых вы можете прочитать в руководстве (man ps). Здесь я опишу лишь наиболее часто используемые мной:

Параметр Описание
-a отобразить все процессы, связанных с терминалом (отображаются процессы всех пользователей)
-e отобразить все процессы
-t список терминалов отобразить процессы, связанные с терминалами
-u идентификаторы пользователей отобразить процессы, связанные с данными идентификаторыми
-g идентификаторы групп отобразить процессы, связанные с данными идентификаторыми групп
-x отобразить все процессы, не связанные с терминалом

Например, после ввода команды ps -a вы увидите примерно следующее:

Для вывода информации о конкретном процессе мы можем воспользоваться командой:

В приведенном выше примере используется перенаправление ввода вывода между программами ps и grep, и как результат получаем информацию обо всех процессах содержащих в строке запуска «httpd». Данную команду (ps -ax | grep httpd) я написал только лишь в демонстрационных целях — гораздо проще использовать параметр -С программы ps вместо перенаправления ввода вывода и параметр -e вместо -ax.

Предназначена для вывода информации о процессах в реальном времени. Процессы сортируются по максимальному занимаемому процессорному времени, но вы можете изменить порядок сортировки (см. man top). Программа также сообщает о свободных системных ресурсах.

Просмотреть информацию об оперативной памяти вы можете с помощью команды free, а о дисковой — df. Информация о зарегистрированных в системе пользователей доступна по команде w.

Изменение приоритета процесса — команда nice

nice [-коэффициент понижения] команда [аргумент]

Команда nice выполняет указанную команду с пониженным приоритетом, коэффициент понижения указывается в диапазоне 1..19 (по умолчанию он равен 10). Суперпользователь может повышать приоритет команды, для этого нужно указать отрицательный коэффициент, например —10. Если указать коэффициент больше 19, то он будет рассматриваться как 19.

nohup — игнорирование сигналов прерывания

nohup команда [аргумент]

nohup выполняет запуск команды в режиме игнорирования сигналов. Не игнорируются только сигналы SIGHUP и SIGQUIT.

kill — принудительное завершение процесса

kill [-номер сигнала] PID

где PID — идентификатор процесса, который можно узнать с помощью команды ps.

Команды выполнения процессов в фоновом режиме — jobs, fg, bg

Команда jobs выводит список процессов, которые выполняются в фоновом режиме, fg — переводит процесс в нормальные режим («на передний план» — foreground), а bg — в фоновый. Запустить программу в фоновом режиме можно с помощью конструкции &

Источник

Оцените статью