- как удалить сегмент разделяемой памяти после того, как некоторая программа не смогла отсоединиться от нее перед выходом?
- POSIX Shared Memory in Linux
- 1.0 Shared Memory
- 2.0 Why is shared memory the fastest IPC mechanism?
- 3.0 System V and POSIX Shared Memory Calls
- 4.0 POSIX Shared Memory Calls
- 4.1 shm_open
- 4.2 shm_unlink
- 5.0 Other System Calls used in POSIX Shared Memory Operations
- 5.1 ftruncate
- 5.2 mmap
- 5.3 munmap
- 6.0 An example: System Logger
- ЋЎй п (б®ў¬Ґбв® ЁбЇ®«м§гҐ¬ п) Ї ¬пвм
- Ѓлбв஥ «®Є «м®Ґ ў§ Ё¬®¤Ґ©бвўЁҐ
- Њ®¤Ґ«м Ї ¬пвЁ
- ‚뤥«ҐЁҐ
- Џ®¤Є«о票Ґ Ё ®вЄ«о票Ґ
- “Їа ў«ҐЁҐ Ё ®бў®Ў®¦¤ҐЁҐ ®ЎйҐ© Ї ¬пвЁ
- ЏаЁ¬Ґа Їа®Ја ¬¬л
- ‡ Ё Їа®вЁў
как удалить сегмент разделяемой памяти после того, как некоторая программа не смогла отсоединиться от нее перед выходом?
Я изучаю ipc на linux-системе. После того, как я попробовал несколько примеров программ с использованием общей памяти, я нашел раздел разделов общей памяти, ожидающий моей Linux-системы, и их нельзя удалить.
Я перезагружаю машину, и они остаются.
Я пишу программу, пытающуюся удалить их, и это тоже не работает. Потому что система думала, что есть какая-то программа, все еще связанная с этим сегментом разделяемой памяти (см. Столбец nattch).
Кто-нибудь знает, как их удалить. Благодарю.
clearShm.c
вывод оболочки для программы выше
Сегодня я запустил компьютер, и я обнаружил, что сегменты разделяемой памяти исчезли. Они все еще были там, прежде чем я выключил компьютер вчера. и я не знаю почему.
Сначала Wel оборудуйте свой код с приведенными ниже деталями:
Вы можете использовать int shmctl(int shmid, int cmd, struct shmid_ds *buf); в вашем коде, чтобы удалить сегмент разделяемой памяти из системы, если в случае отказа вашей программы или выхода из нее.
Однако вы должны посмотреть раздел IPC_RMID на странице man shmctl . man страница состояния ниже условия должны быть выполнены, прежде чем пытаться удалить общий seciton памяти:
IPC_RMID Отметьте сегмент, который нужно уничтожить. Сегмент будет фактически уничтожен только после того, как последний процесс отделит его (т.е. Когда член shm_nattch связанной структуры shmid_ds равен нулю). Вызывающий должен быть владельцем или создателем или быть приватизированным. Если сегмент отмечен для уничтожения, то будет установлен флаг (нестандартный) SHM_DEST поля shm_perm.mode в связанной структуре данных, полученной IPC_STAT.
Вызывающий должен обеспечить, чтобы сегмент был уничтожен; в противном случае его страницы, которые были сбойными, останутся в памяти или свопированы.
См. Также описание /proc/sys/kernel/shm_rmid_forced в proc (5).
Вы можете обратиться к нижеприведенному коду, например:
Чтобы удалить существующие сегменты разделяемой памяти, лучше использовать ipcrm -m как уже сказано в комментариях к вопросу. Вы можете создать сценарий оболочки, который может удалить все сегменты.
Источник
POSIX Shared Memory in Linux
1.0 Shared Memory
Shared memory is the fastest method of interprocess communication (IPC) under Linux and other Unix-like systems. The system provides a shared memory segment which the calling process can map to its address space. After that, it behaves just like any other part of the process’s address space.
2.0 Why is shared memory the fastest IPC mechanism?
If we look at the other IPC mechanisms like message queue or the older mechanisms like the pipe or the fifo, the work required for passing message involves, first copying the message from the address space of the first process to the kernel space via a send-like system call and, then, copying the message from the kernel space to the address space of the second process during a receive-like call. In the case of shared memory, the shared memory segment is mapped to the address space of both processes. As soon as the first process writes data in the shared memory segment, it becomes available to the second process. This makes shared memory faster than other mechanisms and is, in fact, the fastest way of passing data between two processes on the same host system.
3.0 System V and POSIX Shared Memory Calls
For each of the IPC mechanisms, there are two sets of calls, the traditional System V calls and the newer POSIX calls. In this post, we will look at the POSIX shared memory calls. Example programs for server and client processes that communicate via POSIX shared memory are given near the end of this post.
4.0 POSIX Shared Memory Calls
The POSIX shared memory calls seem to be based on the UNIX philosophy that if you do Input/Output operations on an object, that object has to be a file. So, since we do read and write to a POSIX shared memory object, the latter is to be treated as a file. A POSIX shared memory object is a memory-mapped file. POSIX shared memory files are provided from a tmpfs filesystem mounted at /dev/shm . The individual shared memory files are created using the shm_open system call under /dev/shm . There are just two specialized POSIX shared memory system calls, shm_open and shm_unlink , which are analogous to open and unlink system calls for files. Other operations on POSIX shared memory are done using the ftruncate , mmap and munmap system calls for files. A program using POSIX shared memory calls needs to be linked with -lrt .
4.1 shm_open
shm_open is like the open system call for files. It opens a POSIX shared memory object and makes it available to the calling process via the returned file descriptor. The first parameter, name, is the name of the shared memory object and is of the form /somename, that is, it is a null-terminated string of a maximum of NAME_MAX characters, and, its first character is a slash and none of the other characters can be a slash. oflag is a bit mask constructed by OR-ing either O_RDONLY or O_RDWR with one or more of the following flags. O_CREAT creates the shared memory object if it does not exist. And, if it creates the object, the last nine bits of the third parameter, mode are taken for permissions except that the bits set in the file mode creation mask are cleared for the object. Also, if the shared memory object is created, the owner and group ids of the object are set the corresponding effective ids of the calling process. A newly created shared memory object is of size zero bytes. It can be made of the desired size by using the ftruncate system call. If O_EXCL flag is used together with the O_CREAT flag, and the shared memory object for the name already exists, shm_open fails and errno is set to EEXIST . There is another flag, O_TRUNC , which if specified, truncates the shared memory object, if it already exists, to size zero bytes. On success, shm_open returns the file descriptor for the shared memory object. If shm_open fails, it returns -1 and errno is set to the cause of the error.
4.2 shm_unlink
shm_unlink removes the previously created POSIX shared memory object. The name is the name of the shared memory object as described under shm_open , above.
5.0 Other System Calls used in POSIX Shared Memory Operations
5.1 ftruncate
The ftruncate system call makes the object referred to by the file descriptor, fd, of size length bytes. When a POSIX shared memory is created, it is of size zero bytes. Using ftruncate , we can make the POSIX shared memory object of size length bytes. ftruncate returns zero on success. In case of error, ftruncate returns -1 and errno is set to the cause of the error.
5.2 mmap
With the mmap system call, we can map a POSIX shared memory object to the calling process’s virtual address space. addr specifies the address at which it should be mapped. In most cases, we do not care at what address mapping is done and a value of NULL for addr should suffice. length is the length of shared memory object that should be mapped. To keep things simple, we will map the whole object and length for us will be the length of the shared memory object. prot can have the values, PROT_EXEC , PROT_READ , PROT_WRITE and PROT_NONE . PROT_EXEC means that the mapped pages may be executed and PROT_NONE means that the mapped pages may not be accessed. These two values do not make sense for a shared memory object. So we will use PROT_READ | PROT_WRITE value for prot. There are many flags but the only one meaningful for shared memory is MAP_SHARED , which means that the updates to the mapped shared memory are visible to all other processes immediately. fd is, of course, the file descriptor for the shared memory received from an earlier shm_open call. offset is the location in the shared memory object at which the mapping starts; we will use the value zero for offset and map the shared memory object starting right from the beginning. On success, mmap returns the pointer to the location where the shared memory object has been mapped. In case of error, MAP_FAILED , which is, (void *) -1 , is returned and errno is set to the cause of the error.
5.3 munmap
munmap unmapps the shared memory object at location pointed by addr and having size, length. On success, munmap returns 0. In case of error, munmap returns -1 and errno is set to the cause of the error.
6.0 An example: System Logger
The System Logger process creates a POSIX shared memory object and maps it to its address space. Clients also map the shared memory object to their address spaces. When a client wants to log a message, it creates a string in the format and writes the string in the shared memory object. The logger reads strings from the shared memory object, one by one, and writes them in a log file in the chronological order.
The server code is,
And, the client code is,
We can compile and run the server and a client as below.
The Logger writes all messages to the /tmp/example.log file. We can see the contents of the log file with the tail -f command.
Since the Logger runs in an infinite loop and is terminated with a Control-C or the kill command, the semaphore files are left lying in the /dev/shm directory. These need to be removed between successive runs of Logger. That is,
Источник
ЋЎй п (б®ў¬Ґбв® ЁбЇ®«м§гҐ¬ п) Ї ¬пвм
Ћ¤Ё Ё§ б ¬ле Їа®бвле ¬Ґв®¤®ў ¬Ґ¦Їа®жҐбб®ў®Ј® ў§ Ё¬®¤Ґ©бвўЁп — ЁбЇ®«м§®ў вм ®Ўйго Ї ¬пвм. ЋЎй п Ї ¬пвм Ї®§ў®«пҐв ¤ўг¬ Ё«Ё Ў®«ҐҐ Їа®жҐбб ¬ ®Ўа й вмбп Є ®¤®© Ё в®© ¦Ґ ®Ў« бвЁ Ї ¬пвЁ, Є Є Ўг¤в® ®Ё ўбҐ ўл§лў «Ё malloc Ё Ё¬ Ўл«Ё ў®§ўа йҐл гЄ § ⥫Ё ®¤г Ё вг ¦Ґ дЁ§ЁзҐбЄго Ї ¬пвм. Љ®Ј¤ ®¤Ё Їа®жҐбб Ё§¬ҐпҐв Ї ¬пвм, ўбҐ ¤агЈЁҐ Їа®жҐббл «ўЁ¤пв» ¬®¤ЁдЁЄ жЁо.
Ѓлбв஥ «®Є «м®Ґ ў§ Ё¬®¤Ґ©бвўЁҐ
ЋЎй п Ї ¬пвм — б ¬ п Ўлбва п д®а¬ ¬Ґ¦Їа®жҐбб®ў®Ј® ў§ Ё¬®¤Ґ©бвўЁп, Ї®в®¬г зв® ўбҐ Їа®жҐббл б®ў¬Ґбв® ЁбЇ®«м§гов ®¤г Ёвг ¦Ґ з бвм Ї ¬пвЁ. „®бвгЇ Є нв®© ®ЎйҐ© Ї ¬пвЁ ®бгйҐбвў«пҐвбп б в®© ¦Ґ бЄ®а®бвмо, зв® Ё ЇаЁ ®Ўа 饨Ё Є Ґб®ў¬Ґбв® ЁбЇ®«м§гҐ¬®© Ї ¬пвЁ, Ё нв® Ґ вॡгҐв бЁб⥬®Ј® ўл§®ў Ё«Ё ўе®¤ ў п¤а®. ќв® в Є¦Ґ Ґ вॡгҐв Ё§«ЁиҐЈ® Є®ЇЁа®ў Ёп ¤ ле.
Џ®бЄ®«мЄг п¤а® Ґ бЁеа®Ё§ЁагҐв ¤®бвгЇл Є б®ў¬Ґбв® ЁбЇ®«м§гҐ¬®© Ї ¬пвЁ, ўл ¤®«¦л б ¬Ё ®ЎҐбЇҐзЁвм бЁеа®Ё§ жЁо. Ќ ЇаЁ¬Ґа, Їа®жҐбб Ґ ¤®«¦Ґ зЁв вм Ё§ Ї ¬пвЁ, Ї®Є ¤ лҐ Ґ § ЇЁб л вг¤ , Ё ¤ў Їа®жҐбб Ґ ¤®«¦л ЇЁб вм Ї® ®¤®¬г Ё ⮬㠦Ґ ¤аҐбг Ї ¬пвЁ ў ®¤® Ё в® ¦Ґ ўаҐ¬п. ЋЎй п бва ⥣Ёп Ё§ЎҐ¦ Ёп гб«®ўЁ© Ј®ЄЁ б®бв®Ёв ў ⮬, зв®Ўл ЁбЇ®«м§®ў вм ᥬ д®ал.
Њ®¤Ґ«м Ї ¬пвЁ
—в®Ўл ЁбЇ®«м§®ў вм ᥣ¬Ґв ®ЎйҐ© Ї ¬пвЁ, ®¤Ё Їа®жҐбб ¤®«¦Ґ ўл¤Ґ«Ёвм ᥣ¬Ґв. ’®Ј¤ Є ¦¤л© Їа®жҐбб, ¦Ґ« ойЁ© ®Ўа й вмбп Є ᥣ¬Ґвг ¤®«¦Ґ Ї®¤Є«озЁвм ᥣ¬Ґв. Џ®б«Ґ ®Є®з Ёп ҐЈ® ЁбЇ®«м§®ў Ёп ᥣ¬Ґв , Є ¦¤л© Їа®жҐбб ®вЄ«оз Ґв ᥣ¬Ґв. ‚ ҐЄ®в®ал© ¬®¬Ґв, ®¤Ё Їа®жҐбб ¤®«¦Ґ ®бў®Ў®¤Ёвм ᥣ¬Ґв.
Џ®Ё¬ ЁҐ ¬®¤Ґ«Ё Ї ¬пвЁ Linux Ї®¬®Ј Ґв ®ЎкпбЁвм Їа®жҐбб ўл¤Ґ«ҐЁп Ё Ї®¤Є«о票п. Џ®¤ Linux , ўЁавг «м п Ї ¬пвм Є ¦¤®Ј® Їа®жҐбб а §ЎЁв бва Ёжл. Љ ¦¤л© Їа®жҐбб Ї®¤¤Ґа¦Ёў Ґв ®в®Ўа ¦ҐЁҐ ҐЈ® ¤аҐб®ў Ї ¬пвЁ нвЁ бва Ёжл ўЁавг «м®© Ї ¬пвЁ, Є®в®алҐ б®¤Ґа¦ в д ЄвЁзҐбЄЁҐ ¤ лҐ. € е®вп Є ¦¤л© Їа®жҐбб Ё¬ҐҐв б®ЎбвўҐлҐ ¤аҐб , ®в®Ўа ¦ҐЁп ¬®ЈЁе Їа®жҐбб®ў ¬®Јгв гЄ §лў вм ®¤г Ё вг ¦Ґ бва Ёжг, а §аҐи п б®ў¬Ґб⮥ ЁбЇ®«м§®ў ЁҐ Ї ¬пвЁ.
‚뤥«ҐЁҐ ®ў®Ј® ᥣ¬Ґв ®ЎйҐ© Ї ¬пвЁ ЇаЁў®¤Ёв Є б®§¤ Ёо бва Ёжл ўЁавг «м®© Ї ¬пвЁ. Џ®бЄ®«мЄг ўбҐ Їа®жҐббл ¦Ґ« ов ®Ўа вЁвмбп Є ®¤®¬г Ё ⮬㠦Ґ ®ЎйҐ¬г ᥣ¬Ґвг, в® в®«мЄ® ®¤Ё Їа®жҐбб ¤®«¦Ґ ўл¤Ґ«Ёвм ®ўл© ®ЎйЁ© ᥣ¬Ґв. ‚뤥«ҐЁҐ бгйҐбвўго饣® ᥣ¬Ґв Ґ б®§¤ Ґв ®ўле бва Ёж, ў®§ўа й Ґв Ё¤ҐвЁдЁЄ в®а ¤«п бгйҐбвўгойЁе. —в®Ўл а §аҐиЁвм Їа®жҐббг ЁбЇ®«м§®ў вм ᥣ¬Ґв ®ЎйҐ© Ї ¬пвЁ, Їа®жҐбб Ї®¤Є«оз Ґв ᥣ¬Ґв, Є®в®ал© ¤®Ў ў«пҐв ®в®Ўа ¦ҐЁҐ ҐЈ® ўЁавг «м®© Ї ¬пвЁ ®ЎйҐ¤®бвгЇлҐ бва Ёжл ᥣ¬Ґв . Љ®Ј¤ а Ў®в б ᥣ¬Ґв®¬ § ўҐаиҐ , нвЁ ®в®Ўа ¦ҐЁп г¤ «повбп. Љ®Ј¤ Ё ®¤Ё Ё§ Їа®жҐбб®ў Ґ е®зҐв ®Ўа й вмбп Є ᥣ¬Ґв ¬ ®ЎйҐ© Ї ¬пвЁ, Є Є®©-в® ®¤Ё Їа®жҐбб ¤®«¦Ґ ®бў®Ў®¤Ёвм бва Ёжл ўЁавг «м®© Ї ¬пвЁ. ‚ᥠᥣ¬Ґвл ®ЎйҐ© Ї ¬пвЁ ўл¤Ґ«повбп Ї®бва Ёз® Ё ®ЄагЈ«повбп ¤® а §¬Ґа бва Ёжл бЁб⥬л, Є®в®ал© пў«пҐвбп зЁб«®¬ Ў ©в®ў ў бва ЁжҐ Ї ¬пвЁ. Ќ бЁб⥬ е Linux , а §¬Ґа бва Ёжл а ўҐ 4 ЉЃ, ® ўл ¤®«¦л Ї®«гзЁвм нв® § 票Ґ, ўл§лў п дгЄжЁо getpagesize .
‚뤥«ҐЁҐ
Џа®жҐбб ўл¤Ґ«пҐв ᥣ¬Ґв ®ЎйҐ© Ї ¬пвЁ, ЁбЇ®«м§гп shmget (» SHared Memory GET «). …Ј® ЇҐаўл© Ї а ¬Ґва — 楫®зЁб«Ґл© Є«оз, Є®в®ал© ®ЇаҐ¤Ґ«пҐв, Є Є®© ᥣ¬Ґв б®§¤ вм. ЌҐбўп§ лҐ Їа®жҐббл ¬®Јгв ®Ўа й вмбп Є ®¤®¬г Ё ⮬㠦Ґ ᥣ¬Ґвг, ЁбЇ®«м§гп ®¤® Ё в® ¦Ґ Є«о祢®Ґ § 票Ґ. Љ ᮦ «ҐЁо, ¤агЈЁҐ Їа®жҐббл, ў®§¬®¦®, в Є¦Ґ ўлЎа «Ё в®в ¦Ґ б ¬л© Є«оз, зв® ¬®¦Ґв ЇаЁўҐбвЁ Є Є®д«ЁЄвг. €бЇ®«м§гп бЇҐжЁ «мго Є®бв вг IPC_PRIVATE Є Є Є«о祢®Ґ § 票Ґ, Ј а вЁагҐвбп, зв® б®§¤ бвбп б®ўҐа襮 ®ўл© ᥣ¬Ґв Ї ¬пвЁ.
…Ј® ўв®а®© Ї а ¬Ґва ®ЇаҐ¤Ґ«пҐв зЁб«® Ў ©в®ў ў ᥣ¬ҐвҐ. Џ®бЄ®«мЄг ᥣ¬Ґвл ўл¤Ґ«повбп Ї®бва Ёз®, зЁб«® д ЄвЁзҐбЄЁ ўл¤Ґ«Ґле Ў ©в ®ЄагЈ«пҐвбп ¤® а §¬Ґа бва Ёжл.
’аҐвЁ© Ї а ¬Ґва — Ї®а §а冷Ґ ¤ў®Ёз®Ґ Ё«Ё § 票© д« ¦Є , Є®в®алҐ ®ЇаҐ¤Ґ«пов ®ЇжЁЁ Є shmget . ‡ 票п д« ¦Є ўЄ«оз ов в ЄЁҐ Ї а ¬Ґвал:
- IPC_CREAT — нв®в д« ¦®Є гЄ §лў Ґв, зв® ¤®«¦Ґ Ўлвм б®§¤ ®ўл© ᥣ¬Ґв. ќв® а §аҐи Ґв б®§¤ ў вм ®ўл© ᥣ¬Ґв, ®ЇаҐ¤Ґ«пп Є«оз.
- IPC_EXCL — нв®в д« ¦®Є, Є®в®ал© ўбҐЈ¤ ЁбЇ®«м§гҐвбп б IPC_CREAT ,§ бв ў«пҐв shmget ў®§ўа й вм ®иЁЎЄг, Ґб«Ё ᥣ¬Ґвл© Є«оз ®ЇаҐ¤Ґ«Ґ, Є Є 㦥 бгйҐбвўгойЁ©. ќв® ЁбЇ®«м§гҐвбп ¤«п ўл¤Ґ«ҐЁп «нЄбЄ«о§Ёў®Ј®» ᥣ¬Ґв . …б«Ё нв®в д« ¦®Є Ґ ¤ Ґвбп, Ё Є«оз бгйҐбвўго饣® ᥣ¬Ґв ЁбЇ®«м§гҐвбп, shmget ў®§ўа й Ґв бгйҐбвўгойЁ© ᥣ¬Ґв ў¬Ґбв® в®Ј®, зв®Ўл б®§¤ вм ®ўл©.
- Mode flags — нв® § 票Ґ Ё§ 9 ЎЁв®ў, гЄ §лў ойЁе Їа ў , ЇаҐ¤®бв ў«ҐлҐ ў« ¤Ґ«мжг, ЈагЇЇҐ, Ё ¬Ёаг(®бв «мл¬), гЇа ў«ҐЁҐ ¤®бвгЇ®¬ Є ᥣ¬Ґвг. ЃЁвл ўлЇ®«ҐЁп ЁЈ®аЁаговбп. Џа®бв®© бЇ®б®Ў ®ЇаҐ¤Ґ«Ёвм Їа ў б®бв®Ёв ў ⮬, зв®Ўл ЁбЇ®«м§®ў вм Є®бв вл, ®ЇаҐ¤Ґ«ҐлҐ ў Ё ®ЇЁб лҐ ў а §¤Ґ«Ґ 2 stat man-бва Ёж . Ќ ЇаЁ¬Ґа, S_IRUSR Ё S_IWUSR ®ЇаҐ¤Ґ«пов Їа ў з⥨Ґ Ё § ЇЁбм ¤«п ў« ¤Ґ«мж ᥣ¬Ґв ®ЎйҐ© Ї ¬пвЁ, S_IROTH Ё S_IWOTH ®ЇаҐ¤Ґ«пов Їа ў з⥨Ґ Ё § ЇЁбм ¤«п ¤агЈЁе.
Ќ ЇаЁ¬Ґа, нв®в ўл§®ў shmget б®§¤ Ґв ®ўл© ᥣ¬Ґв ®ЎйҐ© Ї ¬пвЁ (Ё«Ё ®Ўа й Ґвбп Є бгйҐбвўго饬г, Ґб«Ё shm_key 㦥 ЁбЇ®«м§гҐвбп), б Їа ў ¬Ё зЁвҐЁҐ Ё § ЇЁбм ў« ¤Ґ«м楬, ® Ґ ¤агЈЁ¬Ё Ї®«м§®ў ⥫ﬨ.
…б«Ё ўл§®ў гбЇҐиҐ, shmget ў®§ўа й Ґв Ё¤ҐвЁдЁЄ в®а ᥣ¬Ґв . …б«Ё ᥣ¬Ґв ®ЎйҐ© Ї ¬п⨠㦥 бгйҐбвўгҐв, в® Їа ў ¤®бвгЇ Їа®ўҐаҐл, Ё Їа®ўҐаЄ Ј а вЁагҐв, з⮠ᥣ¬Ґв Ґ ®в¬ҐзҐ ¤«п г¤ «ҐЁп.
Џ®¤Є«о票Ґ Ё ®вЄ«о票Ґ
—в®Ўл ᤥ« вм ᥣ¬Ґв ®ЎйҐ© Ї ¬пвЁ ¤®бвгЇл¬, Їа®жҐбб ¤®«¦Ґ ЁбЇ®«м§®ў вм shmat , » SHared Memory ATtach » ЏҐаҐ¤ ©вҐ Ґ¬г Ё¤ҐвЁдЁЄ в®а ᥣ¬Ґв ®ЎйҐ© Ї ¬пвЁ SHMID , ў®§ўа йҐл© shmget . ‚в®а®© Ї а ¬Ґва — гЄ § ⥫м, Є®в®ал© ®ЇаҐ¤Ґ«пҐв, Ј¤Ґ ў ¤аҐб®¬ Їа®бва б⢥ ў 襣® Їа®жҐбб ўл е®вЁвҐ ®в®Ўа §Ёвм ®Ўйго Ї ¬пвм; Ґб«Ё ўл ЇҐаҐ¤ ¤ЁвҐ NULL , в® Linux ўлЎҐаҐв «оЎ®© ¤®бвгЇл© ¤аҐб. ’аҐвЁ© Ї а ¬Ґва — д« ¦®Є, Є®в®ал© ¬®¦Ґв ўЄ«озЁвм б«Ґ¤гойЁҐ Ї а ¬Ґвал:
- SHM_RND гЄ §лў Ґв, зв® ¤аҐб, ®ЇаҐ¤Ґ«Ґл© ¤«п ўв®а®Ј® Ї а ¬Ґва , ¤®«¦Ґ Ўлвм ®ЄагЈ«Ґ § ¤ Є ¬®¦ЁвҐ«о а §¬Ґа бва Ёжл. …б«Ё ‚л Ґ ®ЇаҐ¤Ґ«пҐвҐ нв®в д« ¦®Є, ‚л ¤®«¦л ўла®ўпвм Ја Ёжг бва Ёжл ўв®а®© Ї а ¬Ґва ЇҐаҐ¤ ў Ґ¬л© shmat б ¬®бв®п⥫м®.
- SHM_RDONLY гЄ §лў Ґв, з⮠ᥣ¬Ґв Ўг¤Ґв ¤®бвгЇҐ в®«мЄ® ¤«п з⥨п.
- ЃЁвл Їа ў ¤®бв Ї в ЄЁҐ ¦Ґ Є Є Ё ¤«п д ©«®ў.
…б«Ё ўл§®ў гбЇҐиҐ, ® ўҐаҐв ¤аҐб Ї®¤Є«о祮Ј® ®ЎйҐЈ® ᥣ¬Ґв . Џ®в®¬ЄЁ, б®§¤ лҐ ўл§®ў ¬Ё fork , б«Ґ¤гов Ї®¤Є«озҐлҐ ®ЎйЁҐ ᥣ¬Ґвл; ®Ё ¬®Јгв ®вЄ«озЁвм ᥣ¬Ґвл ®ЎйҐ© Ї ¬пвЁ, Ґб«Ё § е®впв.
Љ®Ј¤ ўл § Є®зЁ«Ё а Ў®вг б ᥣ¬Ґв®¬ ®ЎйҐ© Ї ¬пвЁ, ᥣ¬Ґв ¤®«¦Ґ Ўлвм ®вЄ«озҐ, ЁбЇ®«м§гп shmdt (» SHared Memory DeTach «). ЏҐаҐ¤ ©вҐ Ґ¬г ¤аҐб, ў®§ўа йҐл© shmat . …б«Ё ᥣ¬Ґв Ўл« ®бў®Ў®¦¤Ґ, Ё Ў®«миҐ Ґ ®бв «®бм Їа®жҐбб®ў, ЁбЇ®«м§гойЁе ҐЈ®, ® Ўг¤Ґв г¤ «Ґ. ‚л§®ўл exit Ё exec ўв®¬ вЁзҐбЄЁ ®вЄ«оз ов ᥣ¬Ґвл.
“Їа ў«ҐЁҐ Ё ®бў®Ў®¦¤ҐЁҐ ®ЎйҐ© Ї ¬пвЁ
Shmctl (» SHared Memory ConTrol «) ўл§®ў ў®§ўа й Ґв Ёд®а¬ жЁо ®Ў ᥣ¬ҐвҐ ®ЎйҐ© Ї ¬пвЁ Ё ¬®¦Ґв Ё§¬ҐЁвм ҐЈ®.ЏҐаўл© Ї а ¬Ґва — Ё¤ҐвЁдЁЄ в®а ᥣ¬Ґв ®ЎйҐ© Ї ¬пвЁ.
—в®Ўл Ї®«гзЁвм Ёд®а¬ жЁо ® ᥣ¬ҐвҐ ®ЎйҐ© Ї ¬пвЁ, ЇҐаҐ¤ ©вҐ IPC_STAT Є Є ўв®а®© Ї а ¬Ґва Ё гЄ § ⥫м struct shmid_ds .
—в®Ўл г¤ «Ёвм ᥣ¬Ґв, ЇҐаҐ¤ ©вҐ IPC_RMID Є Є ўв®а®© Ї а ¬Ґва, Ё ЇҐаҐ¤ ©вҐ NULL Є Є ваҐвЁ© Ї а ¬Ґва. ‘ҐЈ¬Ґв г¤ «Ґ, Є®Ј¤ Ї®б«Ґ¤Ё© Їа®жҐбб, Є®в®ал© Ї®¤Є«озЁ« ҐЈ®, ®вЄ«озЁв ҐЈ®.
Љ ¦¤л© ᥣ¬Ґв ®ЎйҐ© Ї ¬пвЁ ¤®«¦Ґ Ўлвм пў® ®бў®Ў®¦¤Ґ, ЁбЇ®«м§гп shmctl , Є®Ј¤ ‚л § Є®зЁ«Ё а Ў®вг б Ё¬, зв®Ўл Ё§ЎҐ¦ вм аг襨Ґ бЁб⥬®Ј® ЇаҐ¤Ґ« а §¬Ґа Є®«ЁзҐб⢠ᥣ¬Ґв®ў ®ЎйҐ© Ї ¬пвЁ. ‚л§®ўл exit Ё exec ®вЄ«оз в ᥣ¬Ґвл Ї ¬пвЁ, ® Ґ ®бў®Ў®¦¤пв Ёе.
‘¬®ваЁ shmctl man-бва Ёжг ¤«п ®ЇЁб Ёп ¤агЈЁе ®ЇҐа жЁ©, Є®в®алҐ ¬®¦® ўлЇ®«пвм б ᥣ¬Ґв ¬Ё ®ЎйҐ© Ї ¬пвЁ.
ЏаЁ¬Ґа Їа®Ја ¬¬л
Џа®Ја ¬¬ «ЁбвЁЈ 5.1 Ё««обваЁагҐв ЁбЇ®«м§®ў ЁҐ ®ЎйҐ© Ї ¬пвЁ.
Љ®¬ ¤ ipcs ЇаҐ¤®бв ў«пҐв Ёд®а¬ жЁо ®в®бЁвҐ«м® б।бвў ў§ Ё¬®¤Ґ©бвўЁп Їа®жҐбб®ў, ўЄ«оз п ®ЎйЁҐ ᥣ¬Ґвл Ї ¬пвЁ. €бЇ®«м§г©вҐ д« Ј -m , зв®Ўл Ї®«гзЁвм Ёд®а¬ жЁо ®Ў ®ЎйҐ© Ї ¬пвЁ. Ќ ЇаЁ¬Ґа, нв®в Є®¤ Ё««обваЁагҐв з⮠ᥣ¬Ґв ®ЎйҐ© Ї ¬пвЁ, Їа®г¬Ґа®ў л© 1627649, 室Ёвбп ў ЁбЇ®«м§®ў ЁЁ:
…б«Ё нв®в ᥣ¬Ґв Ї ¬пвЁ Ўл« ®иЁЎ®з® ®бв ў«Ґ Їа®Ја ¬¬®©, ўл ¬®¦ҐвҐ ЁбЇ®«м§®ў вм Є®¬ ¤г ipcrm , зв®Ўл г¤ «Ёвм ҐЈ®.
‡ Ё Їа®вЁў
CҐЈ¬Ґвл ®ЎйҐ© Ї ¬пвЁ Ї®§ў®«пов ®бгйҐбвў«пвм Ўлбваго ¤ўг Їа ў«Ґго бўп§м б।Ё «оЎ®Ј® зЁб« Їа®жҐбб®ў. Љ ¦¤л© Ї®«м§®ў вҐ«м ¬®¦Ґв Ё зЁв вм Ё ЇЁб вм, ® Їа®Ја ¬¬ ¤®«¦ гбв ®ўЁвм Ё б«Ґ¤®ў вм ҐЄ®в®а®¬г Їа®в®Є®«г ¤«п в®Ј®, зв®Ўл ЇаҐ¤®вўа вЁвм гб«®ўЁп Ј®ЄЁ вЁЇ ЇҐаҐ§ ЇЁбЁ Ёд®а¬ жЁЁ ЇаҐ¦¤Ґ, 祬 ® Їа®зЁв Ґвбп. Љ ᮦ «ҐЁо, Linux бва®Ј® Ґ Ј а вЁагҐв нЄбЄ«о§Ёўл© ¤®бвгЇ ¤ ¦Ґ Ґб«Ё ўл б®§¤ ¤ЁвҐ ®ўл© ®ЎйЁ© ᥣ¬Ґв б IPC_PRIVATE .
Ља®¬Ґ в®Ј®, ¤«п в®Ј® зв®Ў ҐбЄ®«мЄ® Їа®жҐбб®ў ¬®Ј«Ё ЁбЇ®«м§®ў вм ®Ўйго Ї ¬пвм, ®Ё ¤®«¦л ЇаЁпвм ¬Ґал, зв®Ўл Ґ ЁбЇ®«м§®ў вм ®¤Ё Ё в®в ¦Ґ Є«оз.
Источник