- Mass Storage Gadget (MSG)В¶
- Overview¶
- Module parameters¶
- sysfs entries¶
- Other gadgets using mass storage function¶
- Relation to file storage gadget¶
- Прокачиваем USB Mass Storage Device на STM32F103 с помощью FreeRTOS и DMA
- Обзор архитектуры
- Какую проблему мы решаем?
- Что не так с DMA из-под USB?
- Прокачиваем драйвер MSC
- Добавим двойной буфер
- А как же запись?
- А еще быстрее можно?
- Заключение
Mass Storage Gadget (MSG)В¶
Overview¶
Mass Storage Gadget (or MSG) acts as a USB Mass Storage device, appearing to the host as a disk or a CD-ROM drive. It supports multiple logical units (LUNs). Backing storage for each LUN is provided by a regular file or a block device, access can be limited to read-only, and gadget can indicate that it is removable and/or CD-ROM (the latter implies read-only access).
Its requirements are modest; only a bulk-in and a bulk-out endpoint are needed. The memory requirement amounts to two 16K buffers. Support is included for full-speed, high-speed and SuperSpeed operation.
Note that the driver is slightly non-portable in that it assumes a single memory/DMA buffer will be usable for bulk-in and bulk-out endpoints. With most device controllers this is not an issue, but there may be some with hardware restrictions that prevent a buffer from being used by more than one endpoint.
This document describes how to use the gadget from user space, its relation to mass storage function (or MSF) and different gadgets using it, and how it differs from File Storage Gadget (or FSG) (which is no longer included in Linux). It will talk only briefly about how to use MSF within composite gadgets.
Module parameters¶
The mass storage gadget accepts the following mass storage specific module parameters:
This parameter lists paths to files or block devices used for backing storage for each logical unit. There may be at most FSG_MAX_LUNS (8) LUNs set. If more files are specified, they will be silently ignored. See also “luns” parameter.
BEWARE that if a file is used as a backing storage, it may not be modified by any other process. This is because the host assumes the data does not change without its knowledge. It may be read, but (if the logical unit is writable) due to buffering on the host side, the contents are not well defined.
The size of the logical unit will be rounded down to a full logical block. The logical block size is 2048 bytes for LUNs simulating CD-ROM, block size of the device if the backing file is a block device, or 512 bytes otherwise.
This parameter specifies whether each logical unit should be removable. “b” here is either “y”, “Y” or “1” for true or “n”, “N” or “0” for false.
If this option is set for a logical unit, gadget will accept an “eject” SCSI request (Start/Stop Unit). When it is sent, the backing file will be closed to simulate ejection and the logical unit will not be mountable by the host until a new backing file is specified by userspace on the device (see “sysfs entries” section).
If a logical unit is not removable (the default), a backing file must be specified for it with the “file” parameter as the module is loaded. The same applies if the module is built in, no exceptions.
The default value of the flag is false, HOWEVER it used to be true. This has been changed to better match File Storage Gadget and because it seems like a saner default after all. Thus to maintain compatibility with older kernels, it’s best to specify the default values. Also, if one relied on old default, explicit “n” needs to be specified now.
Note that “removable” means the logical unit’s media can be ejected or removed (as is true for a CD-ROM drive or a card reader). It does not mean that the entire gadget can be unplugged from the host; the proper term for that is “hot-unpluggable”.
This parameter specifies whether each logical unit should simulate CD-ROM. The default is false.
This parameter specifies whether each logical unit should be reported as read only. This will prevent host from modifying the backing files.
Note that if this flag for given logical unit is false but the backing file could not be opened in read/write mode, the gadget will fall back to read only mode anyway.
The default value for non-CD-ROM logical units is false; for logical units simulating CD-ROM it is forced to true.
This parameter specifies whether FUA flag should be ignored in SCSI Write10 and Write12 commands sent to given logical units.
MS Windows mounts removable storage in “Removal optimised mode” by default. All the writes to the media are synchronous, which is achieved by setting the FUA (Force Unit Access) bit in SCSI Write(10,12) commands. This forces each write to wait until the data has actually been written out and prevents I/O requests aggregation in block layer dramatically decreasing performance.
Note that this may mean that if the device is powered from USB and the user unplugs the device without unmounting it first (which at least some Windows users do), the data may be lost.
The default value is false.
This parameter specifies number of logical units the gadget will have. It is limited by FSG_MAX_LUNS (8) and higher value will be capped.
If this parameter is provided, and the number of files specified in “file” argument is greater then the value of “luns”, all excess files will be ignored.
If this parameter is not present, the number of logical units will be deduced from the number of files specified in the “file” parameter. If the file parameter is missing as well, one is assumed.
Specifies whether the gadget is allowed to halt bulk endpoints. The default is determined according to the type of USB device controller, but usually true.
In addition to the above, the gadget also accepts the following parameters defined by the composite framework (they are common to all composite gadgets so just a quick listing):
idVendor – USB Vendor ID (16 bit integer)
idProduct – USB Product ID (16 bit integer)
bcdDevice – USB Device version (BCD) (16 bit integer)
iManufacturer – USB Manufacturer string (string)
iProduct – USB Product string (string)
iSerialNumber – SerialNumber string (sting)
sysfs entries¶
For each logical unit, the gadget creates a directory in the sysfs hierarchy. Inside of it the following three files are created:
When read it returns the path to the backing file for the given logical unit. If there is no backing file (possible only if the logical unit is removable), the content is empty.
When written into, it changes the backing file for given logical unit. This change can be performed even if given logical unit is not specified as removable (but that may look strange to the host). It may fail, however, if host disallowed medium removal with the Prevent-Allow Medium Removal SCSI command.
Reflects the state of ro flag for the given logical unit. It can be read any time, and written to when there is no backing file open for given logical unit.
Reflects the state of nofua flag for given logical unit. It can be read and written.
Other then those, as usual, the values of module parameters can be read from /sys/module/g_mass_storage/parameters/* files.
Other gadgets using mass storage function¶
The Mass Storage Gadget uses the Mass Storage Function to handle mass storage protocol. As a composite function, MSF may be used by other gadgets as well (eg. g_multi and acm_ms).
All of the information in previous sections are valid for other gadgets using MSF, except that support for mass storage related module parameters may be missing, or the parameters may have a prefix. To figure out whether any of this is true one needs to consult the gadget’s documentation or its source code.
For examples of how to include mass storage function in gadgets, one may take a look at mass_storage.c, acm_ms.c and multi.c (sorted by complexity).
Relation to file storage gadget¶
The Mass Storage Function and thus the Mass Storage Gadget has been based on the File Storage Gadget. The difference between the two is that MSG is a composite gadget (ie. uses the composite framework) while file storage gadget was a traditional gadget. From userspace point of view this distinction does not really matter, but from kernel hacker’s point of view, this means that (i) MSG does not duplicate code needed for handling basic USB protocol commands and (ii) MSF can be used in any other composite gadget.
Because of that, File Storage Gadget has been removed in Linux 3.8. All users need to transition to the Mass Storage Gadget. The two gadgets behave mostly the same from the outside except:
In FSG the “removable” and “cdrom” module parameters set the flag for all logical units whereas in MSG they accept a list of y/n values for each logical unit. If one uses only a single logical unit this does not matter, but if there are more, the y/n value needs to be repeated for each logical unit.
FSG’s “serial”, “vendor”, “product” and “release” module parameters are handled in MSG by the composite layer’s parameters named respectively: “iSerialnumber”, “idVendor”, “idProduct” and “bcdDevice”.
MSG does not support FSG’s test mode, thus “transport”, “protocol” and “buflen” FSG’s module parameters are not supported. MSG always uses SCSI protocol with bulk only transport mode and 16 KiB buffers.
© Copyright The kernel development community.
Источник
Прокачиваем USB Mass Storage Device на STM32F103 с помощью FreeRTOS и DMA
Недавно я ковырялся с подключением своего устройства на микроконтроллере STM32F103 как USB Mass Storage Device, или по русски — как флешку. Вроде бы как все относительно несложно: в графическом конфигураторе STM32CubeMX в пару кликов сгенерировал код, добавил драйвер SD карты, и вуаля — все работает. Только очень медленно — 200кбайт/с при том, что пропускная способность шины USB в режиме Full Speed гораздо выше – 12 мБит/с (грубо 1.2 Мбайт/с). Более того, время старта моей флешки в операционной системе составляет около 50 секунд, что попросту некомфортно в работе. Раз уж я нырнул в эту область, то почему бы и не зачинить скорость передачи.
Вообще-то я уже писал свой драйвер для SD карты (точнее драйвер SPI), который работал через DMA и обеспечивал скорость до 500кб/с. К сожалению в контексте USB этот драйвер не заработал. Причиной всему сама модель общения USB — там все делается на прерываниях, тогда как мой драйвер был заточен под работу в обычном потоке. Да еще и припудрен примитивами синхронизации FreeRTOS.
В этой статье я сделал парочку финтов, которые позволили выжать максимум из связки USB и SD карточки подключенной к микроконтроллеру STM32F103 по SPI. Также тут будет про FreeRTOS, объекты синхронизации и общие подходы к передаче данных через DMA. Так что, думаю, статья будет полезна и тем кто только разбирается в контроллерах STM32, и инструментах вроде DMA, и подходах при работе с FreeRTOS. Код построен на основе библиотек HAL и USB Middleware из пакета STM32Cube, а также SdFat для работы с SD картой.
Обзор архитектуры
Если не вдаваться в подробности отдельных компонентов, то реализация Mass Storage Device (он же Mass Storage Class — MSC) на стороне микроконтроллера — штука сравнительно простая.
С одной стороны находится библиотека USB Core. Она занимается общением с хостом, обеспечивается регистрацию устройства и реализует всякие низкоуровневые штуки USB.
Драйвер Mass Storage (с помощью ядра USB) может принимать и отправлять хосту данные. Примерно как COM порт, только данные передаются блоками. Тут важно смысловое наполнение этих данных: передаются SCSI команды и данные к ним. Причем команд бегает всего несколько видов: прочитать данные, записать данные, узнать размер запоминающего устройства, узнать готовность устройства.
Задача драйвера MSC интерпретировать SCSI команды и перенаправлять вызовы в драйвер запоминающего устройства. Это может быть любое запоминающее устройство с блочным доступом (RAM диск, флешка, сетевое хранилище, компакт диск и др.). В моем случае запоминающее устройство это карточка MicroSD, подключенная через SPI. Набор функций, которые требуются от драйвера примерно такой же: читать, писать, отдавать размер и состояние готовности.
И вот тут появляется один важный нюанс, из-за которого собственно весь сыр-бор. Дело в том, что протокол USB — хост ориентированный. Только хост может стартовать транзакции, отправлять или забирать данные. С точки зрения микроконтроллера это означает что вся активность связанная с USB будет проходить в контексте прерывания. При этом у драйвера MSC будет вызван соответствующий обработчик.
Что касается отправки данных от микроконтроллера в сторону хоста. Микроконтроллер не может самостоятельно инициировать передачу данных. Максимум что может микроконтроллер это сигнализировать ядру USB, что есть данные, которые хост может забрать.
С самой SD картой тоже не все так просто. Дело в том, что карта является сложным устройством (по всей видимости там свой микроконтроллер стоит), а протокол общения весьма нетривиальный. Т.е. это не просто отправил/принял данные по определенному адресу (как в случае с каким нибудь I2C EEPROM модулем). Протокол общения с картой предусматривает целый набор различных команд и подтверждений, проверок контрольных сумм и соблюдений всяких таймаутов.
Я использую библиотеку SdFat. Она реализует работу с SD картой на уровне файловой системы FAT, что я активно использую в своем устройстве. В случае подключения по USB все что связано с файловой системой отключается (эта роль переходит хосту). Но что важно, библиотека отдельно выделяет драйвер карты с интерфейсом, практически таким как хочет того драйвер MSC — прочитать, записать, узнать размер.
Драйвер карты реализует протокол общения с картой через SPI. Он знает какие именно команды слать карте, в какой последовательности и какие ждать ответы. Но сам драйвер не занимается общением с железом. Для этого предусмотрен еще один уровень абстракции — драйвер SPI, который транслирует запросы чтения/записи отдельных блоков в собственно передачу данных по шине SPI. Вот именно в этом месте мне удалось организовать пересылку данных через DMA, что увеличило скорость передачи данных в обычном режиме, но поломало всю малину в случае USB (DMA в итоге пришлось отключить)
Но обо всем по порядку.
Какую проблему мы решаем?
Этот вопрос часто задает мой коллега, чем очень озадачивает собеседников во время технических споров.
Со всей этой кухней есть 2 проблемы:
- Низкая линейная скорость при работе из-под USB. В основном из-за и использования синхронных операций чтения/записи
- Высокая загрузка процессора (до 100%) — устройством становится невозможно пользоваться. Причина в отключенном DMA и необходимости гонять данные средствами процессора.
Но это со стороны контроллера, а есть еще аспекты протокола USB Mass Storage. Я поставил USB сниффер Wireshark и посмотрел какие именно пакеты бегают по шине и вижу еще как минимум 3 причины низкой скорости
- Хост шлет слишком много транзакций
- Транзакции растянуты во времени
- Сами операции чтения/записи происходят синхронно, дожидаясь окончания
Проблему количества транзакций решить довольно просто. Оказалось, что при подключении моего устройства операционка вычитывает всю таблицу FAT и делает еще много разных мелких чтений каталога и MBR. Флешка у меня на 8 гигов, форматирована в FAT32 с размером кластера 4кб. Получается что таблица FAT занимает порядка 8 Мб. При линейной скорости передачи в 200кб/с и получается почти 40 сек.
Самый простой способ сократить количество операций чтения при подключении устройства – уменьшить таблицу FAT. Достаточно просто переформатировать флешку и увеличить размер кластера (тем самым уменьшить их количество и размер таблицы). Я отформатировал карту установив размер кластера в 16кб – размер таблицы FAT стал чуть менее 2 Мб, а время инициализации сократилось до 20 секунд.
В любом случае переформатирование флешки не решает проблему линейной скорости (скорости с которой последовательно читаются большие файлики). Она по прежнему остается на уровне 200кб/с и грузит процессор по самое не хочу. Посмотрим что можно с этим сделать.
Что не так с DMA из-под USB?
Перейдем наконец к коду и посмотрим как у меня устроены чтение/запись на флеш карту (драйвер SPI)
В своем проекте я использую FreeRTOS. Это просто офигенный инструмент, который позволил мне каждую функцию моего устройства обрабатывать в отдельном потоке (задаче). Мне удалось выкинуть огромные машины состояний на все случаи жизни, а код стал существенно проще и понятнее. Все задачи работают одновременно, уступая друг дружке и синхронизируясь если нужно. Ну а если все потоки уснули в ожидании некоторого события, то можно использовать режимы энергосбережения микроконтроллера.
Код, который работает с SD картой так же работает в отдельном потоке. Это позволило написать функции чтения/записи весьма элегантно.
Вся прелесть тут в том, что когда нам нужно прочитать или записать большой блок данных этот код не ждет завершения. Вместо этого запускается передача данных через DMA, а сам поток засыпает. В этом случае процессор может заниматься своими делами, а передача управления переходит другим потокам. Когда передача закончится вызовется прерывание от DMA и разбудит поток, который ждал пересылки данных.
Проблема в том, что такой подход сложно натянуть на модель USB где вся логика работы происходит в прерываниях, а не в обычном потоке выполнения. Т.е. получается, что запрос на чтение/запись мы получим в прерывании, и завершение передачи данных также придется ждать в этом же прерывании.
Пересылку через DMA в контексте прерывания мы, конечно, организовать сможем, но толку от этого будет мало. DMA хорошо работает там где можно запустить передачу и переключить процессор на какую нибудь другую полезную работу, пока передача данных не закончится. Но запустив передачу из прерывания мы не сможем прервать прерывание (извините за тавтологию) и пойти по своим делам. Придется там и висеть в ожидании окончания передачи. Т.е. операция получится синхронной и суммарное время окажется таким же как и в случае без DMA.
Тут гораздо интереснее было бы по запросу от хоста начать передачу данных по DMA и выйти из прерывания. А потом как нибудь на следующем прерывании отчитаться о проделанной работе.
Но это еще не вся картина. Если бы чтение с карты заключалось только в пересылке блока данных, то такой подход было бы не сложно реализовать. Но ведь передача по SPI это, безусловно, самая важная часть, но не единственная. Если посмотреть на чтение/запись блока данных на уровне драйвера карты, то процесс выглядит примерно так.
- Отправить карте команду, дождаться и проверить отклик
- Дождаться готовности карты
- Переслать данные (вот той самой функцией, которую я привел выше)
- Подсчитать контрольную сумму и сравнить ее мнением карты
- Завершить передачу
Если учесть, что этот по виду линейный алгоритм реализован серией вложенных вызовов функций, то рубить его посередине будет не очень разумно. Придется хорошенько перетрусить всю библиотеку. А если учесть, что в некоторых случаях передача может осуществляться не одним куском а в цикле серией маленьких блоков, то задача и вовсе становится невозможной.
Но не все так плохо. Если посмотреть еще выше — на уровень драйвера MSC — то ему вообще по барабану как именно будет происходить передача данных — одним блоком или несколькими, с DMA или без. Главное передать данные и отрапортовать о статусе.
Идеальным местом для экспериментов будет прослойка между драйвером MSC и драйвером карты. Перед всеми издевательствами этот компонент выглядел весьма тривиально — по сути это адаптер между интерфейсом, который хочет видеть драйвер MSC и тем что выдает драйвер карты.
Как я уже говорил, драйвер карты не работает если его вызывать из-под прерывания. Но ведь он хорошо работает в обычном потоке. Так вот и запустим ему отдельный поток.
Этот поток будет получать запросы на чтение и запись через очередь. Каждый запрос включает информацию о типе операции (чтение/запись), номер блока, который нужно прочитать или записать, количество блоков и указатель на буфер данных. Еще я завел указатель на контекст операции — он нам понадобится чуть позже.
Сам поток спит в ожидании команд. Если пришла команда, то выполняется нужная операция, причем синхронно. По окончании операции вызываем коллбек, который в зависимости от реализации сделает то, что нужно по окончании операции чтения/записи.
Поскольку все это выполняется в рамках обычного потока, то драйвер карты внутри может использовать DMA и синхронизацию FreeRTOS.
Функции MSC стали чуть сложнее, но ненамного. Теперь вместо непосредственного чтения или записи этот код отправляет запрос в соответствующий поток.
Тут есть важный момент — изменилась семантика этих функций. Теперь они асинхронные, т.е. не ждут реального окончания операции. Так что нужно будет еще подправить код, который их вызывает, но этим мы займемся чуть позже.
А пока, чтобы проверить эти функции сделаем еще один тестовый поток. Он будет эмулировать USB ядро и посылать запросы на чтение.
Этот код считывает всю карту от начала до конца блоками по 1кб и измеряет скорость чтения. Каждая операция чтения отправляет запрос в поток SD карты. Там синхронно происходит чтение и рапортует об окончании через обратный вызов. Я подставил свою реализацию этого коллбека, которая просто сигнализирует тестовому потоку, что можно продолжать (тестовый поток все это время спит в функции ulTaskNotifyTake() ).
Но самое главное, скорость чтения в таком варианте составляет около 450кб/с, а процессор загружен всего на 3-4%. По моему неплохо.
Прокачиваем драйвер MSC
Итак, драйвер карты мы победили, включив DMA. Но семантика чтения/записи поменялась с синхронной на асинхронную. Теперь нужно подправить реализацию MSC и научить ее работать с асинхронными вызовами. Т.е. на первый запрос от хоста нам нужно начать передачу через DMA, а на все последующие как-то отвечать, мол “предыдущая операция еще не закончилась, загляни позже”.
Вообще-то протокол USB предоставляет такой механизм прямо из коробки. Приемная сторона подтверждает пересылку данных неким статусом. Если данные приняты и обработаны успешно, то приемник подтверждает транзакцию статусом ACK. Если устройство не может обработать транзакцию (не инициализировано, находится в состоянии ошибки или не работает по какой либо другой причине), то ответом будет статус STALL.
А вот если устройство распознало транзакцию, находится в работоспособном состоянии, но данные еще не готовы, то устройство может ответить NAK. В этом случае хост обязан обратиться к устройству с точно таким же запросом чуть позже. Этот статус мы могли бы использовать для отложенного чтения/записи – на первый вызов хоста начинаем передачу данных через DMA, но отвечаем на транзакцию NAK. Когда хост приходит с повторной транзакцией и пересылка через DMA уже закончилась – отвечаем ACK.
К сожалению я не нашел в библиотеке USB от ST хорошего способа отправлять сигнал NAK. Коды возврата функций либо не проверяются, либо могут обрабатывать только 2 состояния – все хорошо, либо ошибка. Во втором случае все конечные точки закрываются, везде выставляется статус STALL.
Я подозреваю, что на уровне самом низком уровне USB драйвера подтверждение NAK используется довольно активно, но как правильно воткнуться с NAK на уровне драйвера класса я не разобрался.
По всей видимости создатели библиотек от ST вместо различных подтверждений предоставили более человечный интерфейс. Если устройству есть что отправить хосту оно вызывает функцию USBD_LL_Transmit() — хост сам заберет предоставленные данные. А если функция не была вызвана, то устройство будет автоматически отвечать NAK ответами. Примерно такая же ситуация с приемом данных. Если устройство готово к приему, то оно вызывает функцию USBD_LL_PrepareReceive(). В противном случае устройство будет отвечать NAK если хост попытается передать данные. Воспользуемся этим знанием для реализации нашего MSC драйвера.
Давайте посмотрим какие транзакции бегают по шине USB (анализ производился до изменений в драйвере карты).
Тут интересно даже не сами транзакции, а их временнЫе отметки. Транзакции на этой картинке я выбрал «легкие» — такие, которые не требуют обработки. Микроконтроллер на такие запросы отвечает захардкоженными ответами, особо не размышляя. Важно тут то, что хост не пуляет транзакциями сплошным потоком. Транзакции идут не чаще чем раз в 1 мс. Даже если ответ готов сразу, хост заберет его только на следующей транзакции через 1мс.
А вот так выглядит чтение одного блока данных в терминах транзакций на шине USB.
Сначала хост отправляет SCSI команду на чтение, а потом отдельными транзакциями читает данные (вторая строка) и статус (третья). Первая транзакция – самая длинная. Во время обработки этой транзакции микроконтроллер как раз и занимается вычиткой с карты. И, опять же, между транзакциями хост выдерживает паузу в 1мс.
Алгоритм драйвера MSC на стороне микроконтроллера выглядит примерно так
- Транзакция SCSI: Read(10) LUN: 0x00 (LBA: 0x00000000, Len: 1)
- Хост отправляет команду на чтение. Со стороны микроконтроллера вызывается функция MSC_BOT_DataOut()
- Команда обрабатывается по цепочке функций MSC_BOT_DataOut() -> MSC_BOT_CBW_Decode() -> SCSI_ProcessCmd() -> SCSI_Read10()
- Поскольку драйвер находится в состоянии hmsc->bot_state == USBD_BOT_IDLE, то готовится процедура чтения: проверяются параметры команды, запоминается сколько всего блоков нужно прочитать, после чего передается управление функции SCSI_ProcessRead() с просьбой прочитать первый блок
- Функция SCSI_ProcessRead() читает данные в синхронном режиме. Именно тут микроконтроллер занят бОльшую часть времени.
- Когда данные получены они перекладываются (с помощью функции USBD_LL_Transmit() ) в выходной буфер конечной точки MSC_IN, чтобы хост мог их забрать
- Драйвер переходит в состояние hmsc->bot_state = USBD_BOT_DATA_IN
- Транзакция SCSI: Data In
- Хост забирает данные из выходного буфера микроконтроллера пакетами по 64 байта (максимальный рекомендованный размер пакета для USB Full Speed устройств). Все это происходит на самом низком уровне в ядре USB, драйвер MSC в этом не участвует
- Когда хост забрал все данные возникает событие Data In. Управление передается в функцию MSC_BOT_DataIn(). Акцентирую Ваше внимание, что эта функция вызывается после реальной отправки данных.
- Драйвер находится в состоянии hmsc->bot_state == USBD_BOT_DATA_IN, что означает мы все еще в режиме чтения данных.
- Если еще не все заказанные блоки прочитаны – стартуем чтение очередного кусочка и ждем завершения, перекладываем в выходной буфер и ждем пока хост заберет данные. Алгоритм повторяется
- Если все блоки прочитаны, то драйвер переключается в состояние USBD_BOT_LAST_DATA_IN для отправки финального статуса команды
- Транзакция SCSI: Response
- К этому моменту данные посылки уже отправлены
- драйвер лишь получает об этом уведомление в переходит в состояние USBD_BOT_IDLE
Самая длинная операция в этой схеме это собственно чтение с карты. По моим замерам чтение занимает порядка 2-3мс в синхронном режиме. Причем передача происходит средствами процессора и все это происходит в прерывании USB. Для сравнения, вычитка одного блока длиной в 512 через DMA занимает чуть более 1мс.
У меня не получилось существенно (скажем до 1Мб/с) ускорить чтение данных – видимо такова пропускная способность карты подключенной по SPI. Но мы можем попробовать поставить к себе на службу 1мс паузы между транзакциями.
Я это вижу так (слегка упрощенно)
- Транзакция SCSI: Read(10) LUN: 0x00 (LBA: 0x00000000, Len: 1)
- Микроконтроллер получает команду на чтение, проверяет все параметры, запоминает количество блоков, которые нужно прочитать
- Микроконтроллер стартует чтение первого блока в асинхронном режиме
- Выходим из прерывания не дожидаясь окончания чтения
- Когда чтение закончилось вызывается коллбек
- Прочитанные данные отправляются в выходной буфер
- Хост их вычитывает без участия драйвера MSC
- Транзакция SCSI: Data In
- Вызывается коллбек функция DataIn(), которая сигнализирует о том, что хост забрал данные и можно делать следующее чтение
- Запускаем чтение следующего блока. Алгоритм повторяется начиная с обратного вызова о завершении чтения
- Если все блоки прочитаны – отправляем пакет статуса
- Транзакция SCSI: Response
- К этому моменту данные посылки уже отправлены
- Готовимся к следующей транзакции
Попробуем реализовать такой подход, благо функция SCSI_ProcessRead() легко разделяется на “до” и “после”. Т.е код который запускает чтение будет выполнятся в контексте прерывания, а оставшийся код переедет в коллбек. Задача этого обратного вызова затолкать прочитанные данные в выходной буфер (хост потом как нибудь заберет эти данные соответствующими запросами)
В коллбеке нужно обращаться к нескольким переменным, которые определялись в функции SCSI_ProcessRead() — указатель на хендл USB, длину передаваемого блока, LUN. Вот тут как раз и пригодился параметр context. Я, правда, не все передавал, а только pdev, а все остальное можно выудить из него. Как по мне такой подход проще чем тягание целой структуры с нужными полями. И, во всяком случае, это лучше чем заводить несколько глобальных переменных.
Добавим двойной буфер
Подход, в целом, заработал, но скорость была по прежнему чуть больше 200кб/с (хотя загрузка процессора починилась и стала около 2-3%). Давайте разбираться что же мешает работать быстрее.
По советам в комментариях к одной из моих статей я таки обзавелся осциллографом (пускай и дешевеньким). Он оказался очень кстати для понимания что вообще там происходит. Я взял неиспользуемый пин и выставлял на нем единицу перед началом чтения и ноль после того как чтение закончилось. На осциллографе процесс чтения выглядел так.
Т.е. само чтение 512 байт занимает чуточку больше 1мс. Когда чтение с карты заканчивается данные передаются в выходной буфер, откуда в течении следующих 1мс хост их забирает. Т.е. тут либо происходит чтение с карты, либо передача по шине USB, но не одновременно.
Обычно такая ситуация решается с помощью двойной буферизации. Более того, USB периферия микроконтроллеров STM32F103 уже предлагает механизмы для двойной буферизации. Только они нам не подойдут по двум причинам:
- Для использования двойной буферизации, которую предлагает сам микроконтроллер, возможно, придется перекроить USB ядро и реализацию MSC
- Размер буфера всего 64 байта, тогда как SD карта блоками меньше чем 512 байт работать не умеет.
Так что нам придется изобрести свою реализацию. Впрочем, это не должно быть сложно. Во-первых зарезервируем место под второй буфер. Я не стал заводить ему отдельную переменную, а просто увеличил существующий буфер в 2 раза. Еще пришлось завести переменную bot_data_idx, которая будет указывать какая половина этого двойного буфера сейчас используется: 0 — первая половина, 1 — вторая.
К слову, структуры cbw и csw весьма чувствительны к выравниванию. Некоторые значения неверно записывались или читались из полей этих структур. Поэтому пришлось перенести их выше чем буферы данных.
Оригинальная реализация работала на прерывании DataIn — сигнале о том, что данные отправились. Т.е. по команде от хоста запускалось чтение, после чего данные прекладывались в выходной буфер. Чтение очередной порции данных “перезаряжалось” по прерыванию DataIn. Нам такой вариант не подходит. Мы будем начинать чтение сразу после того как предыдущее чтение закончилось.
Эта функция немного поменяла структуру. Во-первых, именно тут реализована поддержка двойной буферизации. Поскольку эта функция вызывается когда чтение с карты закончено, то мы сразу можем запустить следующее чтение вызовом SCSI_ProcessRead(). Чтобы новое чтение не затерло только что прочитанные данные как раз и используется второй буфер. За переключение буферов отвечает переменная bot_data_idx.
Но это еще не все. Во-вторых изменилась последовательность действий. Теперь сначала заряжается чтение очередного блока данных и только потом вызывается USBD_LL_Transmit(). Так сделано потому, что функция cardReadCompletedCB() вызывается в контексте обычного потока. Если вызвать USBD_LL_Transmit() вначале, а потом менять значения полей hmsc, то потенциально в этот момент может вызваться прерывание от USB, которое также захочет менять эти поля.
В-третьих пришлось прикрутить дополнительную синхронизацию. Дело в том, что обычно чтение с карты занимает чуточку больше времени чем передача по USB. Но иногда бывает наоборот и тогда вызов USBD_LL_Transmit() для очередного блока случается раньше чем предыдущий блок был полностью отправлен. USB ядро от такой наглости дуреет и данные отправляются неверно.
Отправка данных (Transmit) подтверждается событием Data In, но иногда несколько Transmit’ов происходят подряд. Для таких случаем нужна синхронизация.
Решается это очень просто добавлением небольшой синхронизации. Я добавил в интерфейс USBD_StorageTypeDef парочку функций с довольно простой реализацией (хотя, возможно, названия не очень удачные). В реализации используется обычный семафор в режиме signal-wait. OnFinishOp(), которая вызывается, в коллбеке cardReadCompletedCB() будет спать и ждать пока предыдущий пакет данных отправится.
Факт отправки подтверждается событием DataIn, которое обрабатывается функцией SCSI_Read10(), которая вызовет OnStartOp(), которая разблокирует OnFinishOp(), которая отправит очередной пакет данных, в доме который построил Джек. Даже если функции будут вызываться в обратном порядке (а именно так и будет происходить во время первого чтения — сначала SCSI_Read10(), потом cardReadCompletedCB() ) то все также будет прекрасно работать (свойство семафора в режиме signal-wait).
С такой синхронизацией картинка приобретает следующий вид.
Красными стрелками показана синхронизация. Последний Transmit ждет предыдущий Data In
Последний кусочек паззла — функция SCSI_Read10().
В оригинальной реализации SCSI_Read10() на первый вызов функции проверялись параметры и запускался процесс чтения первого блока. Эта же функция вызывается позже по прерыванию DataIn когда предыдущий пакет уже отправлен и нужно запускать чтение следующего. Обе ветки запускали чтение с помощью функции SCSI_ProcessRead().
В новой реализации вызов SCSI_ProcessRead() переехал внутрь if’а и вызывается только для чтения первого блока (bot_state == USBD_BOT_IDLE), тогда как чтение последующих блоков запускается из cardReadCompletedCB().
Давайте посмотрим что из этого получилось. Я специально добавил небольшие задержки между чтениями блоков, чтобы на осциллографе увидеть вот такие зазубрины. На самом деле между операциями чтения проходит так мало времени, что мой осциллограф этого не видит.
Как видно из этой картинке затея удалась. Новая операция чтения стартует сразу как только предыдущая закончилась. Паузы между чтениями довольно маленькие и диктуются, в основном, хостом (та самая задержка в 1мс между транзакциями). Средняя скорость чтения больших файлов достигает 400-440кб/с, что весьма неплохо. И, наконец, загрузка процессора составляет около 2%.
А как же запись?
Пока я тактично обходил тему записи на карту. Но теперь с полученными знаниями и пониманием работы драйвера MSC реализация функции записи не должна быть сложной.
Оригинальная реализация работает примерно так.
- Транзакция SCSI Write
- Команда обрабатывается по цепочке функций MSC_BOT_DataOut() -> MSC_BOT_CBW_Decode() -> SCSI_ProcessCmd() -> SCSI_Write10()
- Поскольку драйвер находится в состоянии hmsc->bot_state == USBD_BOT_IDLE, то готовится процедура записи: проверяются параметры команды, запоминается сколько всего блоков нужно будет записать
- Вызывается функция USBD_LL_PrepareReceive() которая готовит периферию USB к приему блока данных.
- Драйвер переходит в состояние hmsc->bot_state = USBD_BOT_DATA_OUT
- Транзакция SCSI: Data Out
- Устройство принимает данные пакетами по 64 байта и укладывает эти данные в предоставленный буфер. Все это происходит на самом низком уровне в ядре USB, драйвер MSC в этом не участвует
- Когда данные приняты возникает событие Data Out и опять вызывается функция SCSI_Write10()
- Поскольку драйвер находится в состоянии hmsc->bot_state == USBD_BOT_DATA_OUT, то управление переходит функции SCSI_ProcessWrite()
- Там происходит запись на карту в синхронном режиме
- Если еще не все данные приняты, то прием “перезаряжается” вызовом USBD_LL_PrepareReceive()
- Если все блоки записаны, то вызывается функция MSC_BOT_SendCSW() которая отправляет хосту подтверждение (Control Status Word — CSW), а драйвер переключается в состояние USBD_BOT_IDLE
- Транзакция SCSI: Response
- К этому моменту пакет статуса уже отправлен. Никаких действий не требуется
Для начала адаптируем оригинальную реализацию к асинхронности функции Write(). Нужно просто разделить функцию SCSI_ProcessWrite() и вызывать вторую половину в коллбеке.
Точно также как и в случае чтения нужно как то доставить некоторые переменные из первой функции во вторую. И для этого я использую параметр context и передаю хендл USB устройства (из него можно выудить все необходимые данные).
Скорость записи в таком режиме составляет порядка 90кб/с и в основном ограничена скоростью записи на карту. Это подтверждается осциллограммой — каждый пик это запись одного блока. Судя по картинке, запись 512 байт занимает от 3 до 6мс (каждый раз по разному).
Более того, запись иногда может залипать от 100мс до 0.5с — видимо где то в карте возникает необходимость в различных внутренних активностях — ремаппинг блоков, стирание страниц, или что нибудь в таком духе.
Исходя из этого допиливание двойного буфера вряд ли кардинально улучшит ситуацию. Впрочем все равно попробуем это сделать чисто из спортивного интереса.
Итак, суть упражнения в том, чтобы принимать следующий блок от хоста в то время как предыдущий пишется на карту. На ум сразу приходит вариант запустить запись и прием следующего блока одновременно где нибудь в функции SCSI_Write10(), т.е. по событию DataOut (завершен прием очередного блока). Только работать ничего не будет. т.к. прием идет гораздо быстрее, чем запись и может быть принято больше данных, чем карта успевает писать. Т.е. следующие данные перезатирают ранее принятые, но еще не обработанные.
В такой схеме несколько пакетов могут быть приняты подряд, но не все из них успеют быть записаны на SD карту. Скорее всего часть данных пререзатрется следующим блоком.
Нужно делать синхронизацию. Только где? В случае операции чтения двойную буферизацию и синхронизацию мы организовывали в месте где заканчивается чтение с карты и данные перебрасываются в USB. Этим местом была функция cardReadCompletedCB(). В случае операции записи таким центральным местом будет функция SCSI_Write10() — именно в ней мы окажемся, когда будет принят очередной блок данных, и именно отсюда мы будем стартовать запись на карту.
Но между функциями cardReadCompletedCB() и SCSI_Write10() есть одна принципиальная разница — первая работает в потоке SD карты, а вторая в прерывании USB. Обычный поток может быть приостановлен в ожидании некоторого события или объекта синхронизации. С прерыванием такой фокус не пройдет — все функции FreeRTOS с суффиксом FromISR неблокирующие. Они либо работают как надо (захватывают ресурс, если он свободен, отправляют/получают сообщения через очередь если там есть место или необходимое сообщение), либо эти функции возвращают ошибку. Но они никогда не ждут.
Но если нельзя организовать ожидание в прерывании, то можно попробовать сделать так, чтобы прерывание вообще не вызывалось лишний раз. Точнее даже так: чтобы прерывание возникало ровно столько раз и в такие моменты когда нам нужно.
Давайте рассмотрим несколько случаев, которые могут возникнуть в процессе приема/записи.
Случай №1: прием первого блока. Как только принят первый блок, то можно начинать запись этого блока. Одновременно с этим можно начать прием второго блока. Это избавит от паузы, когда мы не принимаем следующий блок, пока предыдущий пишется на карту.
Случай №2: прием блока в середине транзакции. Скорее всего оба буфера уже будут заполнены. Где нибудь в потоке SD карты идет запись блока данных из первого блока, тогда как второй блок мы только получили от хоста. В принципе ничего не мешает зарядить запись второго блока — там на входе стоит очередь (см функцию SD_MSC_Read() выше), которая регулирует входные запросы и будет писать блоки по очереди. Нужно только убедится, что в этой очереди есть место на 2 запроса.
Но как регулировать прием? У нас всего 2 приемных буфера. Если сразу после приема второго блока начать прием следующего, то это перезатрет данные в первом буфере, откуда в данный момент идет запись на карту. В таком случае правильнее будет начинать прием очередного блока данных когда буфер освободится — когда закончится запись (т.е. в коллбеке функции записи).
Наконец, случай №3: нужно уметь правильно завершить процедуру приема/записи. С последним блоком все понятно — нужно вместо приема очередного блока отправить хосту CSW, что данные приняты и транзакцию можно закрывать. Но нужно помнить, что вначале транзакции мы уже организовали лишний прием, поэтому предпоследний блок не должен заказывать прием лишнего блока.
Вот картинка которая описывает эти случаи.
Случай 1: на первый DataOut сразу же начинаем прием второго блока. Случай 2: начинаем прием очередного блока только после того как запись закончена и буфер свободен. Случай 3: на предпоследней записи прием не начинаем, на последней — отправляем CSW
Интересное наблюдение: если запись на карту идет из первого буфера, то по окончании записи следующий блок будет принят в тот же первый буфер. Точно так же со вторым буфером. Я бы хотел воспользоваться этим фактом в своей реализации.
Попробуем реализовать задуманное. Для реализации первого случая (прием дополнительного блока) нам понадобится специальное состояние
Для реализации второго случая (прием блока по завершению записи) нужно каким-то образом передать в коллбек некоторое количество информации. Для этого я завел структуру с контекстом записи, и объявил 2 экземпляра этой структуры в хендле USB.
Нужно не забыть изменить размер очереди записи в потоке SD карты
Функция SCSI_Write10() изменилась мало, добавилась только инициализация индекса двойного буфера и переход в состояние USBD_BOT_DATA_OUT_1ST
Вся самая интересная логика будет сосредоточена в функции SCSI_ProcessWrite() — именно там будут распределятся буфера и строится вся цепочка чтений и записей.
Во-первых, тут готовится контекст записи — информация, которая будет передаваться в коллбек. В частности тут решается что будем делать, когда запись этого блока закончится:
- в обычном случае будем начинать прием следующего блока в тот же самый буфер (случай №2 из описанных выше)
- В случае предпоследнего блока ничего не будем делать (случай №3)
- В случае последнего блока будем отправлять Control Status Word (CSW) — отчет хосту о статусе операции
После того как блок данных отправлен в очередь записи на карту индекс буфера (bot_data_idx) переключается на альтернативный. Т.е. следующий пакет будет принят в другой буфер.
Наконец, специальный случай (случай №1) — организуем дополнительный прием данных в случае первого блока (состояние USBD_BOT_DATA_OUT_1ST)
Ответная часть этого кода — коллбек о завершении записи на карту. В зависимости от того какой блок был записан либо организовывается прием следующего блока, либо отправляется CSW, либо ничего не происходит.
Финальный аккорд это синхронизация, суть работы которой проще показать на картинке.
Очень редко, но все же иногда возникает ситуация, когда запись на карту заканчивается раньше, чем принят следующий пакет. В итоге код (если бы не было синхронизации) мог бы запросить прием еще одного пакета, хотя текущий ещё не до конца принят. Чтобы такого не происходило пришлось добавить синхронизацию. Теперь прежде чем запросить прием следующего блока код будет ждать пока закончится прием предыдущего. Средства синхронизации, которые использовались при чтении (OnStartOp()/OnFinishOp()) вполне подойдут.
Условия при которых нужно синхронизироваться достаточно хитрые. За счет приема дополнительного блока в начале транзакции синхронизация идет со сдвигом в один блок. Поэтому коллбек записи N-того блока ждет приема N+1 блока. Это в свою очередь означает, что прием первого блока (происходит в контексте прерывания от USB) и запись последнего (происходит в контексте потока SD карты) в синхронизации не нуждаются.
Может показаться что красная стрелка дублирует черную, которая стартует запись следующего блока. Но если посмотреть на код, то видно, что это не так. Красная (синхронизация) синхронизирует код в драйвере MSC (синий квадратик), тогда как очередь обрабатывается в драйвере карты (там где основной цикл потока SD карты). Мне не очень хотелось мешать код разных компонентов.
Я расставил немного дебажного логирования, запись 4кб данных выглядит примерно так
Как и ожидалось, существенного прироста к скорости это не добавило. После переделки скорость составила 95-100 кб/с. Но как я говорил, делалось это все из спортивного интереса.
А еще быстрее можно?
Давайте попробуем. Где-то в середине работы я случайно обратил внимание, что чтение одного блока и чтение последовательности блоков — это разные команды SD карты. Они даже представлены разными методами драйвера карты — readBlock() и readBlocks(). Точно так же различаются команды записи одного блока и записи серии блоков.
Поскольку драйвер MSC по умолчанию заточен на работу с одним блоком в единицу времени, то был смысл заменить readBlocks() на readBlock(). К моему удивлению скорость чтения даже выросла и стала на уровне 480-500кб/с! Аналогичный трюк с функциями записи, к сожалению, прироста скорости не дал.
Но меня с самого начала мучал один вопрос. Давайте еще разок взглянем на картину чтения. Между зазубринами (чтение одного блока) — около 2мс.
Тактирование SPI у меня настроено на 18МГц (используется делитель частоты ядра 72МГц на 4). Теоретически передача 512 байт должна занимать 512 байт * 8 бит /18 МГц = 228мкс. Да, тут будет определенный оверхед на синхронизацию нескольких потоков, обслуживание очереди и прочие штуки, но это никак не объясняет разницу почти в 10 раз!
С помощью осциллографа я измерил сколько реально времени занимают различные части операции чтения
Операция | Время |
Передача запроса от драйвера MSC до драйвера карты (с использованием очереди запросов) | Активное ожидание готовности карты Тут есть ветки в коде, которые добавят вызов SysCall::yield() внутри цикла, но, боюсь, ситуацию это не исправит. Этот вызов всего лишь рекомендуют планировщику задач переключиться на другой поток. Но поскольку другие потоки у меня в основном спят, то ситуацию это кардинально не улучшит — карта ведь тупить не перестанет. Еще один забавный момент. В FreeRTOS контексты переключаются по прерыванию SysTick, который по умолчанию настроен на 1мс. Из-за этого многие операции на осциллографе дружненько выравниваются по сетке с шагом кратным 1мс. Если карта не тупит и чтение одного блока вместе с ожиданием занимает меньше 1мс, то тогда включая все потоки, синхронизации и очереди можно обернуться за один тик. Отсюда теоретическая максимальная скорость чтения в такой модели составляет ровно 500 кб/с (0.5кб за 1мс). Что радует — она достигается!
Но как раз для таких случаев у FreeRTOS предусмотрен механизм принудительного вызова планировщика. Как я уже говорил, нельзя прервать прерывание. Зато можно маякнуть о необходимости вызова планировщика (акцентирую: не вызвать планировщик, а маякнуть о необходимости вызова). Именно это и делает функция portYIELD_FROM_ISR() Теперь когда закончится обработка прерывания (скажем, от DMA) будет автоматически вызвано прерывание PendSV, в обработчике которого и вызывается планировщик. Тот в свою очередь принудительно переключит контекст и передаст управление тому потоку, который ждал семафора. Т.о. время реакции на прерывание можно существенно сократить, и в итоге такой трюк позволяет разогнать чтение на тестовой карте аж до 600кб/с! Но это если нет длительного ожидания готовности карты. К сожалению если карта долго думает, то чтение растягивается на 2 тика (а запись на 4-6) и скорость оказывается существенно ниже. Более того, если код активного ожидания постоянно долбится в карту, а карта долго не отвечает, то так может пройти и целый тик. В этом случае планировщик ОС может решить, что этот поток слишком долго работает и вообще переключить управление на другие потоки. Из-за этого может возникнуть дополнительная задержка. Кстати, тестировал я все это на карте 8Гб класса 6. Я попробовал также несколько других карт, которые у меня были под рукой. Еще одна карта также на 8Гб но 10 класса почему то выдала только 300-350 кб/с на чтение, зато 120 кб/с на запись. Я даже рискнул поставить самую большую и быструю карту, которая у меня была — 32Гб. С ней удалось достичь максимальных скоростей — 650кб/с на чтение и 120кб/с на запись. Кстати, скорости, которые я привожу — средние. Мне нечем было измерить мгновенную скорость. Какие выводы можно сделать из этого анализа?
ЗаключениеВ этой статье я рассказал как мне удалось прокачать реализацию USB MSC от STMicroelectronics. В отличии от других серий микроконтроллеров STM32, серия F103 не имеет встроенной поддержки DMA для USB. Но при помощи FreeRTOS мне удалось прикрутить чтение/запись SD карты через DMA. Ну а что бы максимально эффективно использовать пропускную способность шины USB мне удалось прикрутить двойную буферизацию. Результат превзошел мои ожидания. Изначально я целился на скорость порядка 400кб/с, а удалось выжать аж 650кб/с. Но для меня важно даже не абсолютные показатели скорости, а то, что эта скорость достигается с минимальным вмешательством процессора. Так данные передаются с помощью DMA и периферии USB, а процессор подключается только чтобы зарядить следующую операцию. С записью, правда, супер скоростей получить не удалось — всего 100-120кб/с. Виной всему огромные таймауты самой SD карты. Ну а поскольку карта подключена по SPI другого способа узнать о готовности карты (кроме как постоянно ее опрашивать) вроде как и нету. Из-за этого наблюдается довольно высокая загрузка процессора на операциях записи. У меня есть тайная надежда, что подключив карту по SDIO можно достичь гораздо бОльших скоростей. Я постарался не просто привести код, но и рассказать как он устроен и почему он устроен именно так. Возможно это поможет сделать что нибудь аналогичное для других контроллеров или библиотек. Я не выделял это в отдельную библиотеку, т.к. этот код зависит от других частей моего проекта и библиотеки FreeRTOS. Более того, свой код я строил на базе весьма пропатченой реализации MSC. Так что если вы хотите использовать мой вариант его придется бекпортить на оригинальную библиотеку. Буду рад конструктивным коментариям и другим идеям как можно ускорить работу с SD картой. Источник |