Linux взаимодействие с системой

Содержание
  1. Изучаем процессы в Linux
  2. Содержание
  3. Введение
  4. Атрибуты процесса
  5. Жизненный цикл процесса
  6. Рождение процесса
  7. Состояние «готов»
  8. Состояние «выполняется»
  9. Перерождение в другую программу
  10. Состояние «ожидает»
  11. Состояние «остановлен»
  12. Завершение процесса
  13. Состояние «зомби»
  14. Забытье
  15. Благодарности
  16. Глава 26 Взаимодействие процессов в Linux
  17. Читайте также
  18. ГЛАВА 11 Взаимодействие между процессами
  19. Глава 4 Планирование выполнения процессов
  20. Глава 10 Модель процессов
  21. Глава 8 Взаимодействие сценариев с Microsoft Office
  22. ГЛАВА 6. СТРУКТУРА ПРОЦЕССОВ
  23. ГЛАВА 11. ВЗАИМОДЕЙСТВИЕ ПРОЦЕССОВ
  24. 11.2 ВЗАИМОДЕЙСТВИЕ ПРОЦЕССОВ В ВЕРСИИ V СИСТЕМЫ
  25. 3.3. Взаимодействие процессов
  26. Эффективное взаимодействие процессов архитектуры Classic Server
  27. Глава 5 Взаимодействие процессов
  28. 5.4.2. Взаимодействие родительского и дочернего процессов
  29. Глава 11 Сетевое взаимодействие
  30. Знакомство с межпроцессным взаимодействием на Linux
  31. Именованный канал
  32. Пример
  33. Разделяемая память
  34. Пример
  35. Семафор
  36. Семафор со счетчиком
  37. Пример семафора со счетчиком
  38. Бинарный семафор
  39. Пример mutex
  40. Вместо заключения

Изучаем процессы в Linux


В этой статье я хотел бы рассказать о том, какой жизненный путь проходят процессы в семействе ОС Linux. В теории и на примерах я рассмотрю как процессы рождаются и умирают, немного расскажу о механике системных вызовов и сигналов.

Данная статья в большей мере рассчитана на новичков в системном программировании и тех, кто просто хочет узнать немного больше о том, как работают процессы в Linux.

Всё написанное ниже справедливо к Debian Linux с ядром 4.15.0.

Содержание

Введение

Системное программное обеспечение взаимодействует с ядром системы посредством специальных функций — системных вызовов. В редких случаях существует альтернативный API, например, procfs или sysfs, выполненные в виде виртуальных файловых систем.

Атрибуты процесса

Процесс в ядре представляется просто как структура с множеством полей (определение структуры можно прочитать здесь).
Но так как статья посвящена системному программированию, а не разработке ядра, то несколько абстрагируемся и просто акцентируем внимание на важных для нас полях процесса:

  • Идентификатор процесса (pid)
  • Открытые файловые дескрипторы (fd)
  • Обработчики сигналов (signal handler)
  • Текущий рабочий каталог (cwd)
  • Переменные окружения (environ)
  • Код возврата

Жизненный цикл процесса

Рождение процесса

Только один процесс в системе рождается особенным способом — init — он порождается непосредственно ядром. Все остальные процессы появляются путём дублирования текущего процесса с помощью системного вызова fork(2) . После выполнения fork(2) получаем два практически идентичных процесса за исключением следующих пунктов:

  1. fork(2) возвращает родителю PID ребёнка, ребёнку возвращается 0;
  2. У ребёнка меняется PPID (Parent Process Id) на PID родителя.

После выполнения fork(2) все ресурсы дочернего процесса — это копия ресурсов родителя. Копировать процесс со всеми выделенными страницами памяти — дело дорогое, поэтому в ядре Linux используется технология Copy-On-Write.
Все страницы памяти родителя помечаются как read-only и становятся доступны и родителю, и ребёнку. Как только один из процессов изменяет данные на определённой странице, эта страница не изменяется, а копируется и изменяется уже копия. Оригинал при этом «отвязывается» от данного процесса. Как только read-only оригинал остаётся «привязанным» к одному процессу, странице вновь назначается статус read-write.

Состояние «готов»

Сразу после выполнения fork(2) переходит в состояние «готов».
Фактически, процесс стоит в очереди и ждёт, когда планировщик (scheduler) в ядре даст процессу выполняться на процессоре.

Состояние «выполняется»

Как только планировщик поставил процесс на выполнение, началось состояние «выполняется». Процесс может выполняться весь предложенный промежуток (квант) времени, а может уступить место другим процессам, воспользовавшись системным вывозом sched_yield .

Перерождение в другую программу

В некоторых программах реализована логика, в которой родительский процесс создает дочерний для решения какой-либо задачи. Ребёнок в данном случае решает какую-то конкретную проблему, а родитель лишь делегирует своим детям задачи. Например, веб-сервер при входящем подключении создаёт ребёнка и передаёт обработку подключения ему.
Однако, если нужно запустить другую программу, то необходимо прибегнуть к системному вызову execve(2) :

или библиотечным вызовам execl(3), execlp(3), execle(3), execv(3), execvp(3), execvpe(3) :

Все из перечисленных вызовов выполняют программу, путь до которой указан в первом аргументе. В случае успеха управление передаётся загруженной программе и в исходную уже не возвращается. При этом у загруженной программы остаются все поля структуры процесса, кроме файловых дескрипторов, помеченных как O_CLOEXEC , они закроются.

Как не путаться во всех этих вызовах и выбирать нужный? Достаточно постичь логику именования:

  • Все вызовы начинаются с exec
  • Пятая буква определяет вид передачи аргументов:
    • l обозначает list, все параметры передаются как arg1, arg2, . NULL
    • v обозначает vector, все параметры передаются в нуль-терминированном массиве;
  • Далее может следовать буква p, которая обозначает path. Если аргумент file начинается с символа, отличного от «/», то указанный file ищется в каталогах, перечисленных в переменной окружения PATH
  • Последней может быть буква e, обозначающая environ. В таких вызовах последним аргументом идёт нуль-терминированный массив нуль-терминированных строк вида key=value — переменные окружения, которые будут переданы новой программе.

Семейство вызовов exec* позволяет запускать скрипты с правами на исполнение и начинающиеся с последовательности шебанг (#!).

Есть соглашение, которое подразумевает, что argv[0] совпадает с нулевым аргументов для функций семейства exec*. Однако, это можно нарушить.

Любопытный читатель может заметить, что в сигнатуре функции int main(int argc, char* argv[]) есть число — количество аргументов, но в семействе функций exec* ничего такого не передаётся. Почему? Потому что при запуске программы управление передаётся не сразу в main. Перед этим выполняются некоторые действия, определённые glibc, в том числе подсчёт argc.

Состояние «ожидает»

Некоторые системные вызовы могут выполняться долго, например, ввод-вывод. В таких случаях процесс переходит в состояние «ожидает». Как только системный вызов будет выполнен, ядро переведёт процесс в состояние «готов».
В Linux так же существует состояние «ожидает», в котором процесс не реагирует на сигналы прерывания. В этом состоянии процесс становится «неубиваемым», а все пришедшие сигналы встают в очередь до тех пор, пока процесс не выйдет из этого состояния.
Ядро само выбирает, в какое из состояний перевести процесс. Чаще всего в состояние «ожидает (без прерываний)» попадают процессы, которые запрашивают ввод-вывод. Особенно заметно это при использовании удалённого диска (NFS) с не очень быстрым интернетом.

Читайте также:  Драйвера genius maxfire blaze2 windows

Состояние «остановлен»

В любой момент можно приостановить выполнение процесса, отправив ему сигнал SIGSTOP. Процесс перейдёт в состояние «остановлен» и будет находиться там до тех пор, пока ему не придёт сигнал продолжать работу (SIGCONT) или умереть (SIGKILL). Остальные сигналы будут поставлены в очередь.

Завершение процесса

Ни одна программа не умеет завершаться сама. Они могут лишь попросить систему об этом с помощью системного вызова _exit или быть завершенными системой из-за ошибки. Даже когда возвращаешь число из main() , всё равно неявно вызывается _exit .
Хотя аргумент системного вызова принимает значение типа int, в качестве кода возврата берется лишь младший байт числа.

Состояние «зомби»

Сразу после того, как процесс завершился (неважно, корректно или нет), ядро записывает информацию о том, как завершился процесс и переводит его в состояние «зомби». Иными словами, зомби — это завершившийся процесс, но память о нём всё ещё хранится в ядре.
Более того, это второе состояние, в котором процесс может смело игнорировать сигнал SIGKILL, ведь что мертво не может умереть ещё раз.

Забытье

Код возврата и причина завершения процесса всё ещё хранится в ядре и её нужно оттуда забрать. Для этого можно воспользоваться соответствующими системными вызовами:

Вся информация о завершении процесса влезает в тип данных int. Для получения кода возврата и причины завершения программы используются макросы, описанные в man-странице waitpid(2) .

Передача argv[0] как NULL приводит к падению.

Бывают случаи, при которых родитель завершается раньше, чем ребёнок. В таких случаях родителем ребёнка станет init и он применит вызов wait(2) , когда придёт время.

После того, как родитель забрал информацию о смерти ребёнка, ядро стирает всю информацию о ребёнке, чтобы на его место вскоре пришёл другой процесс.

Благодарности

Спасибо Саше «Al» за редактуру и помощь в оформлении;

Спасибо Саше «Reisse» за понятные ответы на сложные вопросы.

Они стойко перенесли напавшее на меня вдохновение и напавший на них шквал моих вопросов.

Источник

Глава 26 Взаимодействие процессов в Linux

Взаимодействие процессов в Linux

26.1. Способы взаимодействия

Процессы, как и люди, могут «общаться» между собой, то есть обмениваться информацией. В главе 3 мы бегло рассмотрели два средства межпроцессного взаимодействия (IPC, Inter-Process Communication); полудуплексные каналы (конвейеры) и сигналы, но в UNIX-системах таких средств значительно больше. В этой главе я перечислю остальные средства IPC и покажу, как использовать их в программном коде.

С давних времен существуют именованные каналы FIFO (First In — First Out) и сетевые гнезда (сокеты). Вместе с конвейерами и сигналами они составляют IPC типа BSD. Компания AT&T вместе с операционной системой System V предложила три новых вида IPC:

В операционной системе Linux поддерживаются оба типа IPC — System V и BSD, то есть в Linux мы можем использовать все вышеперечисленные способы IPC.

Данный текст является ознакомительным фрагментом.

Продолжение на ЛитРес

Читайте также

ГЛАВА 11 Взаимодействие между процессами

ГЛАВА 11 Взаимодействие между процессами В главе 6 было показано, как создавать процессы и управлять ими, тогда как главы 7—10 были посвящены описанию методов управления потоками, которые выполняются внутри процессов, и объектов, обеспечивающих их синхронизацию. Вместе с

Глава 4 Планирование выполнения процессов

Глава 4 Планирование выполнения процессов В предыдущей главе были рассмотрены процессы — абстракция операционной системы, связанная с активным программным кодом. В этой главе представлен планировщик процессов — код, который позволяет процессам

Глава 10 Модель процессов

Глава 10 Модель процессов Модель процессов — один из «фирменных знаков» Unix. Это — ключ к пониманию прав доступа, отношений между открытыми файлами, сигналов, управления заданиями и большинства других низкоуровневых понятий, описанных в этой книге. Linux адаптирует большую

Глава 8 Взаимодействие сценариев с Microsoft Office

Глава 8 Взаимодействие сценариев с Microsoft Office Не будет большим преувеличением сказать, что почти на всех компьютерах с операционной системой Windows установлены программы пакета Microsoft Office. Эти приложения являются серверами автоматизации, т.е. их действиями можно управлять из

ГЛАВА 6. СТРУКТУРА ПРОЦЕССОВ

ГЛАВА 6. СТРУКТУРА ПРОЦЕССОВ В главе 2 были сформулированы характеристики процессов. В настоящей главе на более формальном уровне определяется понятие «контекст процесса» и показывается, каким образом ядро идентифицирует процесс и определяет его местонахождение. В

ГЛАВА 11. ВЗАИМОДЕЙСТВИЕ ПРОЦЕССОВ

ГЛАВА 11. ВЗАИМОДЕЙСТВИЕ ПРОЦЕССОВ Наличие механизмов взаимодействия дает произвольным процессам возможность осуществлять обмен данными и синхронизировать свое выполнение с другими процессами. Мы уже рассмотрели несколько форм взаимодействия процессов, такие как

11.2 ВЗАИМОДЕЙСТВИЕ ПРОЦЕССОВ В ВЕРСИИ V СИСТЕМЫ

11.2 ВЗАИМОДЕЙСТВИЕ ПРОЦЕССОВ В ВЕРСИИ V СИСТЕМЫ Пакет IPC (interprocess communication) в версии V системы UNIX включает в себя три механизма. Механизм сообщений дает процессам возможность посылать другим процессам потоки сформатированных данных, механизм разделения памяти позволяет

3.3. Взаимодействие процессов

3.3. Взаимодействие процессов Из всех средств межпроцессного взаимодействия, которыми так богаты UNIX-подобные ОС, в этой главе мы рассмотрим только конвейеры и

Эффективное взаимодействие процессов архитектуры Classic Server

Эффективное взаимодействие процессов архитектуры Classic Server В архитектуре Classic Server несколько серверных процессов совместно работают с одной базой данных, осуществляя координацию своих действий через разделяемую таблицу блокировок. Взаимодействие процессов на версиях

Читайте также:  Если нет windows sidebar

Глава 5 Взаимодействие процессов

5.4.2. Взаимодействие родительского и дочернего процессов

5.4.2. Взаимодействие родительского и дочернего процессов Функция pipe() создает два файловых дескриптора, которые действительны только в текущем процессе и его потомках. Эти дескрипторы нельзя передать постороннему процессу. Дочерний процесс получает копии дескрипторов

Глава 11 Сетевое взаимодействие

Глава 11 Сетевое взаимодействие • Краткое описание сетевых компонентов• Простой обмен данными• Слежение за компьютером по сети• Многопользовательский разговорникОрганизация надежного сетевого взаимодействия между приложениями или компонентами одного

Источник

Знакомство с межпроцессным взаимодействием на Linux

Межпроцессное взаимодействие (Inter-process communication (IPC)) — это набор методов для обмена данными между потоками процессов. Процессы могут быть запущены как на одном и том же компьютере, так и на разных, соединенных сетью. IPC бывают нескольких типов: «сигнал», «сокет», «семафор», «файл», «сообщение»…

Отступление: данная статья является учебной и расчитана на людей, только еще вступающих на путь системного программирования. Ее главный замысел — познакомиться с различными способами взаимодействия между процессами на POSIX-совместимой ОС.

Именованный канал

Для передачи сообщений можно использовать механизмы сокетов, каналов, D-bus и другие технологии. Про сокеты на каждом углу можно почитать, а про D-bus отдельную статью написать. Поэтому я решил остановиться на малоозвученных технологиях отвечающих стандартам POSIX и привести рабочие примеры.

Рассмотрим передачу сообщений по именованным каналам. Схематично передача выглядит так:

Для создания именованных каналов будем использовать функцию, mkfifo():

Примечание: mode используется в сочетании с текущим значением umask следующим образом: (mode &

umask). Результатом этой операции и будет новое значение umask для создаваемого нами файла. По этой причине мы используем 0777 (S_IRWXO | S_IRWXG | S_IRWXU), чтобы не затирать ни один бит текущей маски.

Как только файл создан, любой процесс может открыть этот файл для чтения или записи также, как открывает обычный файл. Однако, для корректного использования файла, необходимо открыть его одновременно двумя процессами/потоками, одним для получение данных (чтение файла), другим на передачу (запись в файл).

В случае успешного создания FIFO файла, mkfifo() возвращает 0 (нуль). В случае каких либо ошибок, функция возвращает -1 и выставляет код ошибки в переменную errno.

Типичные ошибки, которые могут возникнуть во время создания канала:

  • EACCES — нет прав на запуск (execute) в одной из директорий в пути pathname
  • EEXIST — файл pathname уже существует, даже если файл — символическая ссылка
  • ENOENT — не существует какой-либо директории, упомянутой в pathname, либо является битой ссылкой
  • ENOSPC — нет места для создания нового файла
  • ENOTDIR — одна из директорий, упомянутых в pathname, на самом деле не является таковой
  • EROFS — попытка создать FIFO файл на файловой системе «только-на-чтение»

Чтение и запись в созданный файл производится с помощью функций read() и write().

Пример

mkfifo.c

Мы открываем файл только для чтения (O_RDONLY). И могли бы использовать O_NONBLOCK модификатор, предназначенный специально для FIFO файлов, чтобы не ждать когда с другой стороны файл откроют для записи. Но в приведенном коде такой способ неудобен.

Компилируем программу, затем запускаем ее:

В соседнем терминальном окне выполняем:

В результате мы увидим следующий вывод от программы:

Разделяемая память

Следующий тип межпроцессного взаимодействия — разделяемая память (shared memory). Схематично изобразим ее как некую именованную область в памяти, к которой обращаются одновременно два процесса:

Для выделения разделяемой памяти будем использовать POSIX функцию shm_open():

Функция возвращает файловый дескриптор, который связан с объектом памяти. Этот дескриптор в дальнейшем можно использовать другими функциями (к примеру, mmap() или mprotect()).

Целостность объекта памяти сохраняется, включая все данные связанные с ним, до тех пор пока объект не отсоединен/удален (shm_unlink()). Это означает, что любой процесс может получить доступ к нашему объекту памяти (если он знает его имя) до тех пор, пока явно в одном из процессов мы не вызовем shm_unlink().

Переменная oflag является побитовым «ИЛИ» следующих флагов:

  • O_RDONLY — открыть только с правами на чтение
  • O_RDWR — открыть с правами на чтение и запись
  • O_CREAT — если объект уже существует, то от флага никакого эффекта. Иначе, объект создается и для него выставляются права доступа в соответствии с mode.
  • O_EXCL — установка этого флага в сочетании с O_CREATE приведет к возврату функцией shm_open ошибки, если сегмент общей памяти уже существует.

Как задается значение параметра mode подробно описано в предыдущем параграфе «передача сообщений».

После создания общего объекта памяти, мы задаем размер разделяемой памяти вызовом ftruncate(). На входе у функции файловый дескриптор нашего объекта и необходимый нам размер.

Пример

Следующий код демонстрирует создание, изменение и удаление разделяемой памяти. Так же показывается как после создания разделяемой памяти, программа выходит, но при следующем же запуске мы можем получить к ней доступ, пока не выполнен shm_unlink().

shm_open.c

После создания объекта памяти мы установили нужный нам размер shared memory вызовом ftruncate(). Затем мы получили доступ к разделяемой памяти при помощи mmap(). (Вообще говоря, даже с помощью самого вызова mmap() можно создать разделяемую память. Но отличие вызова shm_open() в том, что память будет оставаться выделенной до момента удаления или перезагрузки компьютера.)

Компилировать код на этот раз нужно с опцией -lrt:

Смотрим что получилось:

Аргумент «create» в нашей программе мы используем как для создания разделенной памяти, так и для изменения ее содержимого.

Зная имя объекта памяти, мы можем менять содержимое разделяемой памяти. Но стоит нам вызвать shm_unlink(), как память перестает быть нам доступна и shm_open() без параметра O_CREATE возвращает ошибку «No such file or directory».

Семафор

Семафор — самый часто употребляемый метод для синхронизации потоков и для контролирования одновременного доступа множеством потоков/процессов к общей памяти (к примеру, глобальной переменной). Взаимодействие между процессами в случае с семафорами заключается в том, что процессы работают с одним и тем же набором данных и корректируют свое поведение в зависимости от этих данных.

Есть два типа семафоров:

  1. семафор со счетчиком (counting semaphore), определяющий лимит ресурсов для процессов, получающих доступ к ним
  2. бинарный семафор (binary semaphore), имеющий два состояния «0» или «1» (чаще: «занят» или «не занят»)

Рассмотрим оба типа семафоров.

Семафор со счетчиком

Смысл семафора со счетчиком в том, чтобы дать доступ к какому-то ресурсу только определенному количеству процессов. Остальные будут ждать в очереди, когда ресурс освободится.

Итак, для реализации семафоров будем использовать POSIX функцию sem_open():

В функцию для создания семафора мы передаем имя семафора, построенное по определенным правилам и управляющие флаги. Таким образом у нас получится именованный семафор.
Имя семафора строится следующим образом: в начале идет символ «/» (косая черта), а следом латинские символы. Символ «косая черта» при этом больше не должен применяться. Длина имени семафора может быть вплоть до 251 знака.

Если нам необходимо создать семафор, то передается управляющий флаг O_CREATE. Чтобы начать использовать уже существующий семафор, то oflag равняется нулю. Если вместе с флагом O_CREATE передать флаг O_EXCL, то функция sem_open() вернет ошибку, в случае если семафор с указанным именем уже существует.

Параметр mode задает права доступа таким же образом, как это объяснено в предыдущих главах. А переменной value инициализируется начальное значение семафора. Оба параметра mode и value игнорируются в случае, когда семафор с указанным именем уже существует, а sem_open() вызван вместе с флагом O_CREATE.

Для быстрого открытия существующего семафора используем конструкцию:
, где указываются только имя семафора и управляющий флаг.

Пример семафора со счетчиком

Рассмотрим пример использования семафора для синхронизации процессов. В нашем примере один процесс увеличивает значение семафора и ждет, когда второй сбросит его, чтобы продолжить дальнейшее выполнение.

sem_open.c

В одной консоли запускаем:

В соседней консоли запускаем:

Бинарный семафор

Вместо бинарного семафора, для которого так же используется функция sem_open, я рассмотрю гораздо чаще употребляемый семафор, называемый «мьютекс» (mutex).

Мьютекс по существу является тем же самым, чем является бинарный семафор (т.е. семафор с двумя состояниями: «занят» и «не занят»). Но термин «mutex» чаще используется чтобы описать схему, которая предохраняет два процесса от одновременного использования общих данных/переменных. В то время как термин «бинарный семафор» чаще употребляется для описания конструкции, которая ограничивает доступ к одному ресурсу. То есть бинарный семафор используют там, где один процесс «занимает» семафор, а другой его «освобождает». В то время как мьютекс освобождается тем же процессом/потоком, который занял его.

Без мьютекса не обойтись в написании, к примеру базы данных, к которой доступ могут иметь множество клиентов.

Для использования мьютекса необходимо вызвать функцию pthread_mutex_init():

Функция инициализирует мьютекс (перемнную mutex) аттрибутом mutexattr. Если mutexattr равен NULL, то мьютекс инициализируется значением по умолчанию. В случае успешного выполнения функции (код возрата 0), мьютекс считается инициализированным и «свободным».

Типичные ошибки, которые могут возникнуть:

  • EAGAIN — недостаточно необходимых ресурсов (кроме памяти) для инициализации мьютекса
  • ENOMEM — недостаточно памяти
  • EPERM — нет прав для выполнения операции
  • EBUSY — попытка инициализировать мьютекс, который уже был инициализирован, но не унечтожен
  • EINVAL — значение mutexattr не валидно

Чтобы занять или освободить мьютекс, используем функции:

Функция pthread_mutex_lock(), если mutex еще не занят, то занимает его, становится его обладателем и сразу же выходит. Если мьютекс занят, то блокирует дальнейшее выполнение процесса и ждет освобождения мьютекса.
Функция pthread_mutex_trylock() идентична по поведению функции pthread_mutex_lock(), с одним исключением — она не блокирует процесс, если mutex занят, а возвращает EBUSY код.
Фунция pthread_mutex_unlock() освобождает занятый мьютекс.

Коды возврата для pthread_mutex_lock():

  • EINVAL — mutex неправильно инициализирован
  • EDEADLK — мьютекс уже занят текущим процессом

Коды возврата для pthread_mutex_trylock():

  • EBUSY — мьютекс уже занят
  • EINVAL — мьютекс неправильно инициализирован

Коды возврата для pthread_mutex_unlock():

  • EINVAL — мьютекс неправильно инициализирован
  • EPERM — вызывающий процесс не является обладателем мьютекса

Пример mutex

mutex.c

Данный пример демонстрирует совместный доступ двух потоков к общей переменной. Один поток (первый поток) в автоматическом режиме постоянно увеличивает переменную counter на единицу, при этом занимая эту переменную на целую секунду. Этот первый поток дает второму доступ к переменной count только на 10 миллисекунд, затем снова занимает ее на секунду. Во втором потоке предлагается ввести новое значение для переменной с терминала.

Если бы мы не использовали технологию «мьютекс», то какое значение было бы в глобальной переменной, при одновременном доступе двух потоков, нам не известно. Так же во время запуска становится очевидна разница между pthread_mutex_lock() и pthread_mutex_trylock().

Компилировать код нужно с дополнительным параметром -lpthread:

Запускаем и меняем значение переменной просто вводя новое значение в терминальном окне:

Вместо заключения

В следующих статьях я хочу рассмотреть технологии d-bus и RPC. Если есть интерес, дайте знать.
Спасибо.

UPD: Обновил 3-ю главу про семафоры. Добавил подглаву про мьютекс.

Источник

Оцените статью