Load shared lib linux

Linux Commands For Shared Library Management & Debugging Problem

I f you are a developer, you will re-use code provided by others. Usually /lib, /lib64, /usr/local/lib, and other directories stores various shared libraries. You can write your own program using these shared libraries. As a sys admin you need to manage and install these shared libraries. Use the following commands for shared libraries management, security, and debugging problems.

What is a Library In Linux or UNIX?

In Linux or UNIX like operating system, a library is noting but a collection of resources such as subroutines / functions, classes, values or type specifications. There are two types of libraries:

  1. Static libraries – All lib*.a fills are included into executables that use their functions. For example you can run a sendmail binary in chrooted jail using statically liked libs.
  2. Dynamic libraries or linking [ also known as DSO (dynamic shared object)] – All lib*.so* files are not copied into executables. The executable will automatically load the libraries using ld.so or ld-linux.so.

Linux Library Management Commands

  1. ldconfig : Updates the necessary links for the run time link bindings.
  2. ldd : Tells what libraries a given program needs to run.
  3. ltrace : A library call tracer.
  4. ld.so/ld-linux.so: Dynamic linker/loader.

Important Files

As a sys admin you should be aware of important files related to shared libraries:

  1. /lib/ld-linux.so.* : Execution time linker/loader.
  2. /etc/ld.so.conf : File containing a list of colon, space, tab, newline, or comma separated directories in which to search for libraries.
  3. /etc/ld.so.cache : File containing an ordered list of libraries found in the directories specified in /etc/ld.so.conf. This file is not in human readable format, and is not intended to be edited. This file is created by ldconfig command.
  4. lib*.so.version : Shared libraries stores in /lib, /usr/lib, /usr/lib64, /lib64, /usr/local/lib directories.

#1: ldconfig command

You need to use the ldconfig command to create, update, and remove the necessary links and cache (for use by the run-time linker, ld.so) to the most recent shared libraries found in the directories specified on the command line, in the file /etc/ld.so.conf, and in the trusted directories (/usr/lib, /lib64 and /lib). The ldconfig command checks the header and file names of the libraries it encounters when determining which versions should have their links updated. This command also creates a file called /etc/ld.so.cache which is used to speed up linking.

Examples

In this example, you’ve installed a new set of shared libraries at /usr/local/lib/:
$ ls -l /usr/local/lib/
Sample outputs:

Now when you run an app related to libGeoIP.so, you will get an error about missing library. You need to run ldconfig command manually to link libraries by passing them as command line arguments with the -l switch:
# ldconfig -l /path/to/lib/our.new.lib.so
Another recommended options for sys admin is to create a file called /etc/ld.so.conf.d/geoip.conf as follows:

Now just run ldconfig to update the cache:
# ldconfig
To verify new libs or to look for a linked library, enter:
# ldconfig -v
# ldconfig -v | grep -i geoip
Sample outputs:

Troubleshooting Chrooted Jails

You can print the current cache with the -p option:
# ldconfig -p
Putting web server such as Apache / Nginx / Lighttpd in a chroot jail minimizes the damage done by a potential break-in by isolating the web server to a small section of the filesystem. It is also necessary to copy all files required by Apache inside the filesystem rooted at /jail/ directory , including web server binaries, shared Libraries, modules, configuration files, and php/perl/html web pages. You need to also copy /etc/ files and /etc/ld.so.conf.d/ directory to /jail/etc/ directory. Use the ldconfig command to update, print and troubleshoot chrooted jail problems:

Rootkits

A rootkit is a program (or combination of several programs) designed to take fundamental control of a computer system, without authorization by the system’s owners and legitimate managers. Usually, rootkit use /lib, /lib64, /usr/local/lib directories to hide itself from real root users. You can use ldconfig command to view all the cache of all shared libraries and unwanted programs:
# /sbin/ldconfig -p | less
You can also use various tools to detect rootkits under Linux.

Common errors

You may see the errors as follows:

Dynamic linker error in foo
Can’t map cache file cache-file
Cache file cache-file foo

  • No ads and tracking
  • In-depth guides for developers and sysadmins at Opensourceflare✨
  • Join my Patreon to support independent content creators and start reading latest guides:
    • How to set up Redis sentinel cluster on Ubuntu or Debian Linux
    • How To Set Up SSH Keys With YubiKey as two-factor authentication (U2F/FIDO2)
    • How to set up Mariadb Galera cluster on Ubuntu or Debian Linux
    • A podman tutorial for beginners – part I (run Linux containers without Docker and in daemonless mode)
    • How to protect Linux against rogue USB devices using USBGuard

Join Patreon

All of the above errors means the linker cache file /etc/ld.so.cache is corrupt or does not exists. To fix these errors simply run the ldconfig command as follows:
# ldconfig

Can’t find library xyz Error

The executable required a dynamically linked library that ld.so or ld-linux.so cannot find. It means a library called xyz needed by the program called foo not installed or path is not set. To fix this problem install xyz library and set path in /etc/ld.so.conf file or create a file in /etc/ld.so.conf.d/ directory.

#2: ldd command

ldd (List Dynamic Dependencies) is a Unix and Linux program to display the shared libraries required by each program. This tools is required to build and run various server programs in a chroot jail. A typical example is as follows to list the Apache server shared libraries, enter:
# ldd /usr/sbin/httpd
Sample outputs:

Now, you can copy all those libs one by one to /jail directory

Источник

Understanding Shared Libraries in Linux

In programming, a library is an assortment of pre-compiled pieces of code that can be reused in a program. Libraries simplify life for programmers, in that they provide reusable functions, routines, classes, data structures and so on (written by a another programmer), which they can use in their programs.

For instance, if you are building an application that needs to perform math operations, you don’t have to create a new math function for that, you can simply use existing functions in libraries for that programming language.

Examples of libraries in Linux include libc (the standard C library) or glibc (GNU version of the standard C library), libcurl (multiprotocol file transfer library), libcrypt (library used for encryption, hashing, and encoding in C) and many more.

Linux supports two classes of libraries, namely:

  • Static libraries – are bound to a program statically at compile time.
  • Dynamic or shared libraries – are loaded when a program is launched and loaded into memory and binding occurs at run time.
Читайте также:  Лучшие rdp клиенты для linux

Dynamic or shared libraries can further be categorized into:

  • Dynamically linked libraries – here a program is linked with the shared library and the kernel loads the library (in case it’s not in memory) upon execution.
  • Dynamically loaded libraries – the program takes full control by calling functions with the library.

Shared Library Naming Conventions

Shared libraries are named in two ways: the library name (a.k.a soname) and a “filename” (absolute path to file which stores library code).

For example, the soname for libc is libc.so.6: where lib is the prefix, c is a descriptive name, so means shared object, and 6 is the version. And its filename is: /lib64/libc.so.6. Note that the soname is actually a symbolic link to the filename.

Locating Shared Libraries in Linux

Shared libraries are loaded by ld.so (or ld.so.x) and ld-linux.so (or ld-linux.so.x) programs, where x is the version. In Linux, /lib/ld-linux.so.x searches and loads all shared libraries used by a program.

A program can call a library using its library name or filename, and a library path stores directories where libraries can be found in the filesystem. By default, libraries are located in /usr/local/lib, /usr/local/lib64, /usr/lib and /usr/lib64; system startup libraries are in /lib and /lib64. Programmers can, however, install libraries in custom locations.

The library path can be defined in /etc/ld.so.conf file which you can edit with a command line editor.

The line(s) in this file instruct the kernel to load file in /etc/ld.so.conf.d. This way, package maintainers or programmers can add their custom library directories to the search list.

If you look into the /etc/ld.so.conf.d directory, you’ll see .conf files for some common packages (kernel, mysql and postgresql in this case):

If you take a look at the mariadb-x86_64.conf, you will see an absolute path to package’s libraries.

The method above sets the library path permanently. To set it temporarily, use the LD_LIBRARY_PATH environment variable on the command line. If you want to keep the changes permanent, then add this line in the shell initialization file /etc/profile (global) or

/.profile (user specific).

Managing Shared Libraries in Linux

Let us now look at how to deal with shared libraries. To get a list of all shared library dependencies for a binary file, you can use the ldd utility. The output of ldd is in the form:

This command shows all shared library dependencies for the ls command.

Sample Output

Because shared libraries can exist in many different directories, searching through all of these directories when a program is launched would be greatly inefficient: which is one of the likely disadvantages of dynamic libraries. Therefore a mechanism of caching employed, performed by a the program ldconfig.

By default, ldconfig reads the content of /etc/ld.so.conf, creates the appropriate symbolic links in the dynamic link directories, and then writes a cache to /etc/ld.so.cache which is then easily used by other programs.

This is very important especially when you have just installed new shared libraries or created your own, or created new library directories. You need to run ldconfig command to effect the changes.

After creating your shared library, you need to install it. You can either move it into any of the standard directories mentioned above, and run the ldconfig command.

Alternatively, run the following command to create symbolic links from the soname to the filename:

To get started with creating your own libraries, check out this guide from The Linux Documentation Project(TLDP).

Thats all for now! In this article, we gave you an introduction to libraries, explained shared libraries and how to manage them in Linux. If you have any queries or additional ideas to share, use the comment form below.

If You Appreciate What We Do Here On TecMint, You Should Consider:

TecMint is the fastest growing and most trusted community site for any kind of Linux Articles, Guides and Books on the web. Millions of people visit TecMint! to search or browse the thousands of published articles available FREELY to all.

If you like what you are reading, please consider buying us a coffee ( or 2 ) as a token of appreciation.

We are thankful for your never ending support.

Источник

Static, Shared Dynamic and Loadable Linux Libraries

This tutorial discusses the philosophy behind libraries and the creation and use of C/C++ library «shared components» and «plug-ins». The various technologies and methodologies used and insight to their appropriate application, is also discussed. In this tutorial, all libraries are created using the GNU Linux compiler.

Related YoLinux Tutorials:

Libraries employ a software design also known as «shared components» or «archive libraries», which groups together multiple compiled object code files into a single file known as a library. Typically C functions/C++ classes and methods which can be shared by more than one application are broken out of the application’s source code, compiled and bundled into a library. The C standard libraries and C++ STL are examples of shared components which can be linked with your code. The benefit is that each and every object file need not be stated when linking because the developer can reference the library collective. This simplifies the multiple use and sharing of software components between applications. It also allows application vendors a way to simply release an API to interface with an application. Components which are large can be created for dynamic use, thus the library can remain separate from the executable reducing it’s size and thus less disk space is used for the application. The library components are then called by various applications for use when needed.

Benefits include:

  • Component reuse: update one library, shared resource takes up less disk space.
  • Version management: Linux libraries can cohabitate old and new versions on a single system.
  • Component Specialization: niche and specialized developers can focus on their core competency on a single library. Simplifies testing and verification.

There are two Linux C/C++ library types which can be created:

  1. Static libraries (.a): Library of object code which is linked with, and becomes part of the application.
  2. Dynamically linked shared object libraries (.so): There is only one form of this library but it can be used in two ways.
    1. Dynamically linked at run time. The libraries must be available during compile/link phase. The shared objects are not included into the executable component but are tied to the execution.
    2. Dynamically loaded/unloaded and linked during execution (i.e. browser plug-in) using the dynamic linking loader system functions.

Library naming conventions:

Consider the following compile and link command: gcc src-file.c -lm -lpthread
The libraries referenced in this example for inclusion during linking are the math library («m») and the thread library («pthread»). They are found in /usr/lib/libm.a and /usr/lib/libpthread.a.

Note: The GNU compiler now has the command line option «-pthread» while older versions of the compiler specify the pthread library explicitly with «-lpthread». Thus now you are more likely to see gcc src-file.c -lm -pthread

How to generate a static library (object code archive file):

  • Compile: cc -Wall -c ctest1.c ctest2.c
    Compiler options:
    • -Wall: include warnings. See man page for warnings specified.
  • Create library «libctest.a»: ar -cvq libctest.a ctest1.o ctest2.o
  • List files in library: ar -t libctest.a
  • Linking with the library:
    • cc -o executable-name prog.c libctest.a
    • cc -o executable-name prog.c -L/path/to/library-directory -lctest
  • Example files:
    • ctest1.c
    • ctest2.c
    • prog.c
Читайте также:  Не показывает диски после установки windows

Historical note: After creating the library it was once necessary to run the command: ranlib ctest.a. This created a symbol table within the archive. Ranlib is now embedded into the «ar» command.

Note for MS/Windows developers: The Linux/Unix «.a» library is conceptually the same as the Visual C++ static «.lib» libraries.

How to generate a shared object: (Dynamically linked object library file.) Note that this is a two step process.

  1. Create object code
  2. Create library
  3. Optional: create default version using a symbolic link.

Library creation example: This creates the library libctest.so.1.0 and symbolic links to it.

It is also valid to cascade the linkage: If you look at the libraries in /lib/ and /usr/lib/ you will find both methodologies present. Linux developers are not consistent. What is important is that the symbolic links eventually point to an actual library.

  • -Wall: include warnings. See man page for warnings specified.
  • -fPIC: Compiler directive to output position independent code, a characteristic required by shared libraries. Also see «-fpic».
  • -shared: Produce a shared object which can then be linked with other objects to form an executable.
  • -Wl,options: Pass options to linker.
    In this example the options to be passed on to the linker are: «-soname libctest.so.1«. The name passed with the «-o» option is passed to gcc.
  • Option -o: Output of operation. In this case the name of the shared object to be output will be «libctest.so.1.0«
  • The link to /opt/lib/libctest.so allows the naming convention for the compile flag -lctest to work.
  • The link to /opt/lib/libctest.so.1 allows the run time binding to work. See dependency below.

Compile main program and link with shared object library:

Compiling for run-time linking with a dynamically linked libctest.so.1.0: Use: Where the name of the library is libctest.so. (This is why you must create the symbolic links or you will get the error «/usr/bin/ld: cannot find -lctest».)
The libraries will NOT be included in the executable but will be dynamically linked during run-time execution.

The shared library dependencies of the executable can be listed with the command: ldd name-of-executable

Example: ldd prog [Potential Pitfall] : Unresolved errors within a shared library may cause an error when the library is loaded. Example:

Error message at run-time:

The first three libraries show that there is a path resolution. The last two are problematic.

The fix is to resolve dependencies of the last two libraries when linking the library libname-of-lib.so:

  • Add the unresolved library path in /etc/ld.so.conf.d/name-of-lib-x86_64.conf and/or /etc/ld.so.conf.d/name-of-lib-i686.conf
    Reload the library cache (/etc/ld.so.cache) with the command: sudo ldconfig
    or
  • Add library and path explicitly to the compiler/linker command: -lname-of-lib -L/path/to/lib
    or
  • Add the library path to the environment variable to fix run-time dependency:
    export LD_LIBRARY_PATH=$LD_LIBRARY_PATH:/path/to/lib
  • Set path: export LD_LIBRARY_PATH=/opt/lib:$LD_LIBRARY_PATH
  • Run: prog

Example with code:

Using the example code above for ctest1.c, ctest2.c and prog.c

  1. Compile the library functions: gcc -Wall -fPIC -c ctest1.c ctest2.c
  2. Generate the shared library: gcc -shared -Wl,-soname,libctest.so.1 -o libctest.so.1.0 ctest1.o ctest2.o
    This generates the library libctest.so.1.0
  3. Move to lib/ directory:
    • sudo mv libctest.so.1.0 /opt/lib
    • sudo ln -sf /opt/lib/libctest.so.1.0 /opt/lib/libctest.so.1
    • sudo ln -sf /opt/lib/libctest.so.1 /opt/lib/libctest.so

    Compile program for use with a shared library: gcc -Wall -L/opt/lib prog.c -lctest -o prog
    [Potential Pitfall] : If the symbolic links are not created (above), you will get the following error: The reference to the library name -lctest refers to /opt/lib/libctest.so

  4. Configure the library path (see below and choose one of three mechanisms).
    In this example we set the environment variable: export LD_LIBRARY_PATH=$LD_LIBRARY_PATH:/opt/lib
  5. Run the program: ./prog
    [Potential Pitfall] : You get the following error if the library path is not set:
  • gcc — GNU C compiler
  • ld — The GNU Linker
  • ldd — List library dependencies
  • ldconfig — configure dynamic linker run time bindings (update cache /etc/ld.so.cache)

In order for an executable to find the required libraries to link with during run time, one must configure the system so that the libraries can be found. Methods available: (Do at least one of the following)

    Add library directories to be included during dynamic linking to the file /etc/ld.so.conf

Add the library path to this file and then execute the command (as root) ldconfig to configure the linker run-time bindings.
You can use the «-f file-name» flag to reference another configuration file if you are developing for different environments.
See man page for command ldconfig.

Add specified directory to library cache: (as root)
ldconfig -n /opt/lib
Where /opt/lib is the directory containing your library libctest.so
(When developing and just adding your current directory: ldconfig -n . Link with -L.)

This will NOT permanently configure the system to include this directory. The information will be lost upon system reboot.

Specify the environment variable LD_LIBRARY_PATH to point to the directory paths containing the shared object library. This will specify to the run time loader that the library paths will be used during execution to resolve dependencies.
(Linux/Solaris: LD_LIBRARY_PATH, SGI: LD_LIBRARYN32_PATH, AIX: LIBPATH, Mac OS X: DYLD_LIBRARY_PATH, HP-UX: SHLIB_PATH)

Example (bash shell): export LD_LIBRARY_PATH=/opt/lib:$LD_LIBRARY_PATH or add to your

This instructs the run time loader to look in the path described by the environment variable LD_LIBRARY_PATH, to resolve shared libraries. This will include the path /opt/lib.

Library paths used should conform to the «Linux Standard Base» directory structure.

ar: list object files in archive library

This will list all of the object files held in the archive library: Also see: Man page for ar

nm: list symbols: object files, archive library and shared library

The command «nm» lists symbols contained in object files:

The command «nm» lists symbols contained in the archive library:

Object symbols in static archive libraries are categorized using the source and object file hierarchy of the library:

The command «nm» lists symbols contained in the object file or shared library.

Use the command nm -D libctest.so.1.0
(or nm --dynamic libctest.so.1.0)

Note that other platforms (Cygwin) may not respond to «-D». Try nm -gC libctest.so.1.0

Also see: Man page for nm

Symbol Type Description
A The symbol’s value is absolute, and will not be changed by further linking.
B Un-initialized data section
D Initialized data section
T Normal code section
U Undefined symbol used but not defined. Dependency on another library.
W Doubly defined symbol. If found, allow definition in another library to resolve dependency.

Also see: objdump man page

readelf: list symbols in shared library

The command «readelf» command to list symbols contained in a shared library:

Use the command readelf -s /usr/lib64/libjpeg.so

Also see: readelf man page

Library versions should be specified for shared objects if the function interfaces are expected to change (C++ public/protected class definitions), more or fewer functions are included in the library, the function prototype changes (return data type (int, const int, . ) or argument list changes) or data type changes (object definitions: class data members, inheritance, virtual functions, . ).

The library version can be specified when the shared object library is created. If the library is expected to be updated, then a library version should be specified. This is especially important for shared object libraries which are dynamically linked. This also avoids the Microsoft «DLL hell» problem of conflicting libraries where a system upgrade which changes a standard library breaks an older application expecting an older version of the the shared object function.

Versioning occurs with the GNU C/C++ libraries as well. This often make binaries compiled with one version of the GNU tools incompatible with binaries compiled with other versions unless those versions also reside on the system. Multiple versions of the same library can reside on the same system due to versioning. The version of the library is included in the symbol name so the linker knows which version to link with.

One can look at the symbol version used: nm csub1.o

No version is specified in object code by default.

There is one GNU C/C++ compiler flag that explicitly deals with symbol versioning. Specify the version script to use at compile time with the flag: --version-script=your-version-script-file
Note: This is only useful when creating shared libraries. It is assumed that the programmer knows which libraries to link with when static linking. Run-time linking allows opportunity for library incompatibility.

GNU/Linux, see examples of version scripts here: sysdeps/unix/sysv/linux/Versions

Some symbols may also get version strings from assembler code which appears in glibc headers files. Look at include/libc-symbols.h.

Example: nm /lib/libc.so.6 | more

Note the use of a version script.

Library referencing a versioned library: nm /lib/libutil-2.2.5.so

These libraries are dynamically loaded / unloaded and linked during execution. Useful for creating a «plug-in» architecture.

Prototype include file for the library: ctest.h

Load and unload the library libctest.so (created above), dynamically:

gcc -rdynamic -o progdl progdl.c -ldl

  • dlopen("/opt/lib/libctest.so", RTLD_LAZY);
    Open shared library named «libctest.so«.
    The second argument indicates the binding. See include file dlfcn.h.
    Returns NULL if it fails.
    Options:
    • RTLD_LAZY: If specified, Linux is not concerned about unresolved symbols until they are referenced.
    • RTLD_NOW: All unresolved symbols resolved when dlopen() is called.
    • RTLD_GLOBAL: Make symbol libraries visible.
  • dlsym(lib_handle, "ctest1");
    Returns address to the function which has been loaded with the shared library..
    Returns NULL if it fails.
    Note: When using C++ functions, first use nm to find the «mangled» symbol name or use the extern "C" construct to avoid name mangling.
    i.e. extern "C" void function-name();

Object code location: Object code archive libraries can be located with either the executable or the loadable library. Object code routines used by both should not be duplicated in each. This is especially true for code which use static variables such as singleton classes. A static variable is global and thus can only be represented once. Including it twice will provide unexpected results. The programmer can specify that specific object code be linked with the executable by using linker commands which are passed on by the compiler.

Use the «-Wl» gcc/g++ compiler flag to pass command line arguments on to the GNU «ld» linker.

Example makefile statement: g++ -rdynamic -o appexe $(OBJ) $(LINKFLAGS) -Wl,--whole-archive -L -laa -Wl,--no-whole-archive $(LIBS)

  • —whole-archive: This linker directive specifies that the libraries listed following this directive (in this case AA_libs) shall be included in the resulting output even though there may not be any calls requiring its presence. This option is used to specify libraries which the loadable libraries will require at run time.
  • -no-whole-archive: This needs to be specified whether you list additional object files or not. The gcc/g++ compiler will add its own list of archive libraries and you would not want all the object code in the archive library linked in if not needed. It toggles the behavior back to normal for the rest of the archive libraries.
  • dlopen() — gain access to an executable object file
  • dclose() — close a dlopen object
  • dlsym() — obtain the address of a symbol from a dlopen object
  • dlvsym() — Programming interface to dynamic linking loader.
  • dlerror() — get diagnostic information

C++ and name mangling:

When running the above «C» examples with the «C++» compiler one will quickly find that «C++» function names get mangled and thus will not work unless the function definitions are protected with extern "C"<>.

Note that the following are not equivalent:

The following are equivalent:

Dynamic loading of C++ classes:

The dynamic library loading routines enable the programmer to load «C» functions. In C++ we would like to load class member functions. In fact the entire class may be in the library and we may want to load and have access to the entire object and all of its member functions. Do this by passing a «C» class factory function which instantiates the class.

The class «.h» file:

The class «.cpp» file:

Main executable which calls the loadable libraries:

Pitfalls:

  • The new/delete of the C++ class should both be provided by the executable or the library but not split. This is so that there is no surprise if one overloads new/delete in one or the other.

The Microsoft Windows equivalent to the Linux / Unix shared object («.so») is the «.dll». The Microsoft Windows DLL file usually has the extension «.dll», but may also use the extension «.ocx». On the old 16 bit windows, the dynamically linked libraries were also named with the «.exe» suffix. «Executing» the DLL will load it into memory.

The Visual C++ .NET IDE wizard will create a DLL framework through the GUI, and generates a «.def» file. This «module definition file» lists the functions to be exported. When exporting C++ functions, the C++ mangled names are used. Using the Visual C++ compiler to generate a «.map» file will allow you to discover the C++ mangled name to use in the «.def» file. The «SECTIONS» label in the «.def» file will define the portions which are «shared». Unfortunately the generation of DLLs are tightly coupled to the Microsoft IDE, so much so that I would not recommend trying to create one without it.

The Microsoft Windows C++ equivalent functions to libdl are the following functions:

  • ::LoadLibrary() — dlopen()
  • ::GetProcAddress() — dlsym()
  • ::FreeLibrary() — dlclose()

[Potential Pitfall] : Microsoft Visual C++ .NET compilers do not allow the linking control that the GNU linker «ld» allows (i.e. —whole-archive, -no-whole-archive). All symbols need to be resolved by the VC++ compiler for both the loadable library and the application executable individually and thus it can cause duplication of libraries when the library is loaded. This is especially bad when using static variables (i.e. used in singleton patterns) as you will get two memory locations for the static variable, one used by the loadable library and the other used by the program executable. This breaks the whole static variable concept and the singleton pattern. Thus you can not use a static variable which is referenced by by both the loadable library and the application executable as they will be unique and different. To use a unique static variable, you must pass a pointer to that static variable to the other module so that each module (main executable and DLL library) can use the same instantiation. On MS/Windows you can use shared memory or a memory mapped file so that the main executable and DLL library can share a pointer to an address they both will use.

Cross platform (Linux and MS/Windows) C++ code snippet:

Источник

Читайте также:  Звуковые сигналы mac os
Оцените статью