Адрес этой статьи в Интернете: http://www.thg.ru/software/luks_encfs_cryptofs/
Системы шифрования данных LUKS, EncFS и CryptoFS под Linux
Хранение данных в зашифрованном виде — прекрасный способ защитить информацию, чтобы она не попала к злоумышленнику. Для охраны интеллектуальной собственности, производственных секретов или информации личного характера разрабатываются криптографические системы. Они могут быть выполнены в различных формах, предлагать разные уровни функциональности и содержать любое число опций, чтобы подходить под широкий диапазон операционных оболочек и сред. Сегодня количество современных криптографических методов, алгоритмов и решений гораздо больше, чем раньше. Да и качество разработки намного лучше. Более того, на рынке присутствует немало работоспособных решений на основе открытого кода, что позволяет достигать хорошего уровня защиты, не тратя большие суммы денег.
В декабре 2005 Понемонский институт провёл среди различных специалистов в сфере защиты информации опрос, касающийся шифрования и защиты данных. Среди 6298 опрошенных лишь 4 процента респондентов использовали шифрование в масштабах предприятия. Из этого же опроса выявились три главные причины стойкого противления официальным правилам шифрования:
69% опрошенных упоминали проблемы с производительностью;
44% опрошенных упоминали сложности с реализацией;
25% опрошенных говорили о высокой цене реализации криптографических алгоритмов.
Во многих странах организации подвержены воздействию множества рычагов давления для увеличения «прозрачности» их работы. Но, с другой же стороны, на них лежит установленная законом ответственность за необеспечение сохранности конфиденциальной информации. Так было, в частности, в случае с обувными магазинами корпорации DSW в США).
Федеральная торговая комиссия США выдвинула иск против DSW, в котором было заявлено о необеспечении должного уровня защиты информации и непринятии должных мер для построения адекватных систем ограничения доступа к этим данным, а также о неудовлетворительной защите сетевых соединений между магазинными и офисными компьютерами. В случае с компанией DSW примерно 1,4 миллиона кредитных карт и около 96 тысяч чековых счетов были потенциально доступны преступникам. И прежде чем соглашения между компанией и ФТК были достигнуты, этими счетами уже успели нелегально воспользоваться.
В наше время программные и инженерные решения по шифрованию данных доступны, как никогда. USB-ключ, дешевеющий день ото дня, всё чаще используется вместо смарт-карт. Последние, в свою очередь, тоже нередко можно встретить, ведь большинство ноутбуков содержат считыватель смарт-карт.
Потребители всё чаще начинают задумываться об опасностях, касающихся кражи личной информации, данных о владельце, номеров кредитных карточек. И эти опасения только лишь подогреваются сообщениями о массовых продажах украденной информации подобного рода из учреждений, которым доверены столь ценные данные.
Потребители также начинают осознавать, что важно защищать личную информацию не только в Интернете, но и вне сети. В конце концов, нежелательный доступ к вашим данным не всегда происходит через сеть. Этот вопрос особенно актуален для тех, чьи незащищённые ноутбуки могут попасть либо в руки обслуживающего персонала для изменения конфигурации, либо в сервис на ремонт.
Технические вопросы шифрования
Функции шифрования необходимы всем современным многопользовательским компьютерным системам, где данные, процессы и информация пользователей логически разделяются. Чтобы установить подлинность пользователя в подобной системе, логины и пароли хэшируются и сравниваются с уже имеющимися в системе хэшами (либо хэш используется для расшифровки сеансового ключа, который потом проверяется на валидность). В целях предотвращения несанкционированного просмотра личной информации внутри зашифрованных контейнеров могут храниться отдельные файлы или целые разделы. А сетевые протоколы, например, SSL\TLS и IPSec, позволяют, если это необходимо, усилить криптографическую защиту различных устройств (/dev/random, /dev/urandom и т.д.) с помощью модульных алгоритмов, работающих с ядром операционной системы.
Задача любой технологии шифрования диска состоит в защите от нежелательного доступа к личной информации и в уменьшении урона от потерь интеллектуальной собственности в результате нелегального доступа или кражи физического устройства. Операционная система Linux с версией ядра 2.6.4 представила усовершенствованную криптографическую инфраструктуру, которая просто и надёжно защищает личные данные на многих уровнях программного обеспечения. Существуют как целые стандарты хранения данных в зашифрованном виде на низком уровне, подобно Linux Unified Key Setup (LUKS), так и реализации на пользовательском уровне, например, файловые системы EncFS и CryptoFS, которые, в свою очередь, основаны на Fast Userspace File System (FUSE) под Linux. Конечно же, любая криптографическая система устойчива к взлому настолько, насколько устойчивы её пароли и ключи доступа. Всего существует три основных уровня, на которых применяются технологии шифрования:
уровень файлов и файловой системы (пофайловое шифрование, контейнер с файлами);
низкий блочный уровень (контейнер с файловой системой);
уровень «железа» (специализированные криптографические устройства).
Шифрование на уровне файлов — весьма простой способ, применяющийся обычно для обмена файлами. Шифрование используется от случая к случаю, что удобно для пересылки разумного количества файлов. Для многопользовательских файловых систем возникает проблема управления ключами, поскольку папки и файлы разных пользователей шифруются разными ключами. Конечно, можно использовать один ключ, но тогда мы получаем технологию, напоминающую шифрование диска. Как и всегда, на пользователя ложится ответственность за выбор наиболее надёжного пароля.
Более продвинутые криптографические приложения работают на уровне файловой системы, отслеживая файлы в момент создания, записи или модификации. Этот метод предоставляет лучшую защиту личной информации при любом способе её использования, он хорош и при большом количестве файлов. Кроме того, здесь не нужно заботиться о приложениях, которые не умеют шифровать файлы по отдельности.
Криптографические программные продукты для Linux.
Некоторые криптографические технологии бесплатны и включены во многие дистрибутивы. Кстати, последние версии Windows оснащаются специальной файловой системой с поддержкой шифрования Encrypted File System (EFS). Fedora поддерживает ряд опций шифрования, включая LUKS (можно включить поддержку LUKS и под Windows, если использовать файловые системы FAT или FAT32 и приложение FreeOTFE). А в дополнительных пакетах Extras доступны FUSE и EncFS. CryptoFS тоже можно установить, скачав с официального сайта. .
Инфраструктура FUSE состоит из загружаемого модуля ядра и userspace-библиотеки, которая служит основой как для файловой системы CryptoFS, так и для Encrypted file system (EncFS). По своей структуре FUSE не затрагивает исходный код ядра и при этом обеспечивает высокую гибкость для реализации многих интересных дополнений, например, файловой системы с удалённым монтированием Secure Shell file system (SSHFS).
CryptoFS хранит зашифрованные данные в привычной структуре директорий, разделённой на две основных части: текстовая информация (список файлов, папок, архивов) и собственно зашифрованные данные. Повторно смонтировать зашифрованную директорию можно только с помощью ключа. При использовании CryptoFS не нужно специальных привилегий, настройка тоже труда не составляет.
Файловая система EncFS — тоже userspace-реализация на основе библиотека FUSE, обеспечивающая защиту от кражи информации и работающая по принципу пофайлового шифрования. Она унаследовала свою структуру от ранних версий, но с улучшениями как по форме, так и по функциям. Файловая система EncFS может быть динамически расширена, чтобы удовлетворить возрастающим требованиям пользователей. Файлы могут шифроваться по различным параметрам (например, при изменении содержания, по атрибутам и т.д.). По сути, нижележащим хранилищем для EncFS может быть что угодно: от ISO-образа до сетевого раздела или даже распределённой файловой системы.
Обе файловых системы работают по сквозному принципу, и их можно использовать поверх других файловых систем и логических абстракций, например, поверх журнальной или расширенной файловой системы, которая может быть распределена по нескольким физическим носителям посредством менеджера логических разделов (LVM). Следующая иллюстрация схематично показывает, как работает эта файловая система: в данной диаграмме видимая директория обозначена /mount (уровень незашифрованных данных EncFS).
Userspace-оверлей, показывающий взаимодействие FUSE и EncFS.
Под уровнем абстракций файловой системы находятся схемы низкоуровневого (блочного) шифрования, подобные использующейся в LUKS. Схемы такого типа работают только по блокам диска, не обращая внимания на абстракции файловой системы более высоких уровней. Подобные схемы могут быть использованы для файлов подкачки, для различных контейнеров или даже для целых физических носителей, включая полное шифрование корневого раздела.
LUKS работает без точного знания формата файловой системы.
LUKS разработана в соответствии с Trusted Key Setup #1 (TKS1) и совместима с Windows, если использовать какой-либо общий формат файловой системы (FAT/FAT32). Система хорошо подходит для мобильных пользователей, поддерживает выпуск и отзыв ключей Gnu Privacy Guard (GPG) и абсолютно бесплатна. LUKS способна на гораздо большее, чем любая другая описанная в этой статье реализация. Более того, LUKS поддерживает большое число решений для создания и управления устройствами с шифрованием LUKS.
Файловая система CryptoFS принимает только пароль, в то время как носитель, зашифрованный с помощью LUKS, работает с любыми ключами PGP (Pretty Good Privacy) с любым количеством паролей. EncFS также использует пароль для защиты файлов, но он открывает ключ, хранящийся в соответствующем корневом каталоге.
Различия между реализациями на низком и userspace-уровнях лучше всего заметны на практических тестах. На низком уровне данные могут быть «прозрачно» переданы файловой системе, которая управляет операциями записи и чтения гораздо эффективнее.
Нашей тестовой платформой стал ноутбук Dell Latitude C610, немного устаревший, но всё же достаточно шустрый представитель технологий образца 2002 года. При питании от аккумулятора C610 снижает частоту процессора до 733 МГц. Поэтому во время тестирования мы не отключали ноутбук от розетки. В следующей таблице приведена конфигурация ноутбука
Тестовая конфигурация
Процессор
Intel Pentium III M (1200 МГц)
Память
256 Мбайт PC133 SDRAM
Контроллер ввода/вывода
Intel 82801CA/CAM
Жёсткий диск
Hitachi 20 Гбайт 2,5″ UltraATA/100
Дистрибутив Linux
Fedora Core 5
Результаты тестирования были получены при использовании файловой системы EXT3 под Linux. Возможно, EXT3 в сравнении с другими журнальными файловыми системами не самая производительная. Но эксперименты с тонкой настройкой формата системы, размера блоков, параметров накопителей и т.д. не являются задачами нашего тестирования, поскольку не соответствуют критериями простой настройки и конфигурации. Напомним, что целью статьи было показать, как криптографические решения под Linux позволяют просто, эффективно и дёшево создавать защищённые хранилища данных.
LUKS, FUSE и EncFS доступны в дистрибутиве Fedora, так что дополнительных усилий прилагать не потребуется. А вот CryptoFS придется скачивать отдельно.
Компиляция CryptoFS из исходного кода достаточно проста. Распакуйте архив, выполните конфигурационный скрипт в конечной директории, затем запустите make, как показано на иллюстрации. Файл конфигурации содержит четыре параметра: код шифрования (encryption cipher), алгоритм профиля сообщения (message digest algorithm), размер блока (block size) и счётчик (encryption salt count).
Процесс установки CryptoFS прост.
Настройка состоит из указания путей начальной и конечной директорий (для зашифрованных и незашифрованных данных). Затем можно запускать команду cryptofs, как показано на следующем рисунке.
Настройка CryptoFS.
Затем можно запускать команду mount, после чего можно будет видеть смонтированный раздел.
Сначала убедитесь в загрузке модуля ядра FUSE (modprobe fuse). EncFS упрощает процесс создания зашифрованного контейнера, как видно на следующей иллюстрации.
Установка EncFS.
Если опустить процесс установки ключей (который специфичен для каждой ситуации), то LUKS можно легко настроить, как показано ниже.
Форматируем устройство низкого уровня в формате LUKS.
Открываем LUKS для доступа системе.
Форматирование и открытие доступа к LUKS.
Форматируем mount-точку (чтобы она стала доступной пользователю).
Форматируем mount-точку.
Тесты и анализ производительности
Различия в производительности между «родной» установкой и установкой в среде, зашифрованной LUKS, достаточно незначительны. Особенно с учётом заметной разницы у userspace-решений. Для поочерёдной оценки производительности зашифрованных файловых систем мы использовали Iozone. Для тестов используются записи от 4 кбайт до 16 Мбайт, размер файла меняется от 64 кбайт до 512 Мбайт, а результат указан в кбайт/с.
Ниже приведены результаты операций записи на разделы в разных форматах: оригинальном, шифрованном LUKS, а также с userspace-системами CryptoFS и EncFS.
Соответственно, ниже приведены результаты тестов повторной записи (re-write).
Ниже приведены результаты тестов чтения.
Наконец, перейдём к результатам тестов повторного чтения (re-read).
Файловые системы CryptoFS и EncFS показывают лучшую производительность при размере файла и записи, близком к «родному» размеру страницы Linux-систем (4096 кбайт). Результаты обеих userspace-систем существенно отстают от результатов шифрования LUKS, как и предполагалось. Действительно, использование различных абстракций FUSE и криптографических систем налагает дополнительную задержку на все операции чтения и записи.
По крайней мере, там, где используется LUKS, о производительности можно не задумываться. Хотя, конечно, некоторая потеря производительности вызвана «прозрачным» шифрованием данных. Систему LUKS легко и просто установить, а использовать её можно как в Linux, так и под Windows.
Корпоративным пользователям наверняка придётся столкнуться с ограничениями, связанными с политикой компании. Часто они запрещают решения на основе открытого исходного кода или запрещают некоторые реализации. Кроме того, иногда приходится учитывать ограничения по импорту/экспорту технологий шифрования, касающиеся стойкости кода, или ИТ-департамент требует телефонной поддержки со стороны поставщика решения, что позволяет забыть о LUKS, EncFS и CryptoFS. В любом случае, LUKS — прекрасное решение, если подобные проблемы вас не беспокоят. Хороший вариант для малого бизнеса или для домашних пользователей.
Но следует помнить, что шифрование данных — это не панацея. Поскольку шифрование выполняется прозрачно, то любая троянская программа, работающая от имени пользователя, может получить доступ к зашифрованным данным.
CryptoFS и EncFS — userspace-реализации. Как мы объясняли ранее, они отличаются простотой дизайна и реализации, но за это приходится платить производительностью и возможностями. Особенно это очевидно при сравнении с LUKS. Она не только работает ощутимо быстрее, но также поддерживает один или несколько PGP-ключей и может использоваться на всём разделе.
Userspace-контейнеры важны, в первую очередь, для пользователей, которые желают защитить личную информацию в многопользовательском окружении. И кому нужно защитить свои данные так, чтобы даже администратор не смог получить доступ к аппаратным или программным ресурсам. Кроме преимуществ по производительности и межплатформенной поддержке, LUKS прекрасно интегрируется с GNOME и системами управления PGP-ключами. А лёгкость повседневного использования шифрованных LUKS разделов просто впечатляет. Кстати, EncFS поддерживает Pluggable Authentication Module (PAM) под Linux в соответствующих окружениях.