Знакомство с межпроцессным взаимодействием на Linux
Межпроцессное взаимодействие (Inter-process communication (IPC)) — это набор методов для обмена данными между потоками процессов. Процессы могут быть запущены как на одном и том же компьютере, так и на разных, соединенных сетью. IPC бывают нескольких типов: «сигнал», «сокет», «семафор», «файл», «сообщение»…
Отступление: данная статья является учебной и расчитана на людей, только еще вступающих на путь системного программирования. Ее главный замысел — познакомиться с различными способами взаимодействия между процессами на POSIX-совместимой ОС.
Именованный канал
Для передачи сообщений можно использовать механизмы сокетов, каналов, D-bus и другие технологии. Про сокеты на каждом углу можно почитать, а про D-bus отдельную статью написать. Поэтому я решил остановиться на малоозвученных технологиях отвечающих стандартам POSIX и привести рабочие примеры.
Рассмотрим передачу сообщений по именованным каналам. Схематично передача выглядит так:
Для создания именованных каналов будем использовать функцию, mkfifo():
Примечание: mode используется в сочетании с текущим значением umask следующим образом: (mode &
umask). Результатом этой операции и будет новое значение umask для создаваемого нами файла. По этой причине мы используем 0777 (S_IRWXO | S_IRWXG | S_IRWXU), чтобы не затирать ни один бит текущей маски.
Как только файл создан, любой процесс может открыть этот файл для чтения или записи также, как открывает обычный файл. Однако, для корректного использования файла, необходимо открыть его одновременно двумя процессами/потоками, одним для получение данных (чтение файла), другим на передачу (запись в файл).
В случае успешного создания FIFO файла, mkfifo() возвращает 0 (нуль). В случае каких либо ошибок, функция возвращает -1 и выставляет код ошибки в переменную errno.
Типичные ошибки, которые могут возникнуть во время создания канала:
- EACCES — нет прав на запуск (execute) в одной из директорий в пути pathname
- EEXIST — файл pathname уже существует, даже если файл — символическая ссылка
- ENOENT — не существует какой-либо директории, упомянутой в pathname, либо является битой ссылкой
- ENOSPC — нет места для создания нового файла
- ENOTDIR — одна из директорий, упомянутых в pathname, на самом деле не является таковой
- EROFS — попытка создать FIFO файл на файловой системе «только-на-чтение»
Чтение и запись в созданный файл производится с помощью функций read() и write().
Пример
mkfifo.c
Мы открываем файл только для чтения (O_RDONLY). И могли бы использовать O_NONBLOCK модификатор, предназначенный специально для FIFO файлов, чтобы не ждать когда с другой стороны файл откроют для записи. Но в приведенном коде такой способ неудобен.
Компилируем программу, затем запускаем ее:
В соседнем терминальном окне выполняем:
В результате мы увидим следующий вывод от программы:
Разделяемая память
Следующий тип межпроцессного взаимодействия — разделяемая память (shared memory). Схематично изобразим ее как некую именованную область в памяти, к которой обращаются одновременно два процесса:
Для выделения разделяемой памяти будем использовать POSIX функцию shm_open():
Функция возвращает файловый дескриптор, который связан с объектом памяти. Этот дескриптор в дальнейшем можно использовать другими функциями (к примеру, mmap() или mprotect()).
Целостность объекта памяти сохраняется, включая все данные связанные с ним, до тех пор пока объект не отсоединен/удален (shm_unlink()). Это означает, что любой процесс может получить доступ к нашему объекту памяти (если он знает его имя) до тех пор, пока явно в одном из процессов мы не вызовем shm_unlink().
Переменная oflag является побитовым «ИЛИ» следующих флагов:
- O_RDONLY — открыть только с правами на чтение
- O_RDWR — открыть с правами на чтение и запись
- O_CREAT — если объект уже существует, то от флага никакого эффекта. Иначе, объект создается и для него выставляются права доступа в соответствии с mode.
- O_EXCL — установка этого флага в сочетании с O_CREATE приведет к возврату функцией shm_open ошибки, если сегмент общей памяти уже существует.
Как задается значение параметра mode подробно описано в предыдущем параграфе «передача сообщений».
После создания общего объекта памяти, мы задаем размер разделяемой памяти вызовом ftruncate(). На входе у функции файловый дескриптор нашего объекта и необходимый нам размер.
Пример
Следующий код демонстрирует создание, изменение и удаление разделяемой памяти. Так же показывается как после создания разделяемой памяти, программа выходит, но при следующем же запуске мы можем получить к ней доступ, пока не выполнен shm_unlink().
shm_open.c
После создания объекта памяти мы установили нужный нам размер shared memory вызовом ftruncate(). Затем мы получили доступ к разделяемой памяти при помощи mmap(). (Вообще говоря, даже с помощью самого вызова mmap() можно создать разделяемую память. Но отличие вызова shm_open() в том, что память будет оставаться выделенной до момента удаления или перезагрузки компьютера.)
Компилировать код на этот раз нужно с опцией -lrt:
Смотрим что получилось:
Аргумент «create» в нашей программе мы используем как для создания разделенной памяти, так и для изменения ее содержимого.
Зная имя объекта памяти, мы можем менять содержимое разделяемой памяти. Но стоит нам вызвать shm_unlink(), как память перестает быть нам доступна и shm_open() без параметра O_CREATE возвращает ошибку «No such file or directory».
Семафор
Семафор — самый часто употребляемый метод для синхронизации потоков и для контролирования одновременного доступа множеством потоков/процессов к общей памяти (к примеру, глобальной переменной). Взаимодействие между процессами в случае с семафорами заключается в том, что процессы работают с одним и тем же набором данных и корректируют свое поведение в зависимости от этих данных.
Есть два типа семафоров:
- семафор со счетчиком (counting semaphore), определяющий лимит ресурсов для процессов, получающих доступ к ним
- бинарный семафор (binary semaphore), имеющий два состояния «0» или «1» (чаще: «занят» или «не занят»)
Рассмотрим оба типа семафоров.
Семафор со счетчиком
Смысл семафора со счетчиком в том, чтобы дать доступ к какому-то ресурсу только определенному количеству процессов. Остальные будут ждать в очереди, когда ресурс освободится.
Итак, для реализации семафоров будем использовать POSIX функцию sem_open():
В функцию для создания семафора мы передаем имя семафора, построенное по определенным правилам и управляющие флаги. Таким образом у нас получится именованный семафор.
Имя семафора строится следующим образом: в начале идет символ «/» (косая черта), а следом латинские символы. Символ «косая черта» при этом больше не должен применяться. Длина имени семафора может быть вплоть до 251 знака.
Если нам необходимо создать семафор, то передается управляющий флаг O_CREATE. Чтобы начать использовать уже существующий семафор, то oflag равняется нулю. Если вместе с флагом O_CREATE передать флаг O_EXCL, то функция sem_open() вернет ошибку, в случае если семафор с указанным именем уже существует.
Параметр mode задает права доступа таким же образом, как это объяснено в предыдущих главах. А переменной value инициализируется начальное значение семафора. Оба параметра mode и value игнорируются в случае, когда семафор с указанным именем уже существует, а sem_open() вызван вместе с флагом O_CREATE.
Для быстрого открытия существующего семафора используем конструкцию:
, где указываются только имя семафора и управляющий флаг.
Пример семафора со счетчиком
Рассмотрим пример использования семафора для синхронизации процессов. В нашем примере один процесс увеличивает значение семафора и ждет, когда второй сбросит его, чтобы продолжить дальнейшее выполнение.
sem_open.c
В одной консоли запускаем:
В соседней консоли запускаем:
Бинарный семафор
Вместо бинарного семафора, для которого так же используется функция sem_open, я рассмотрю гораздо чаще употребляемый семафор, называемый «мьютекс» (mutex).
Мьютекс по существу является тем же самым, чем является бинарный семафор (т.е. семафор с двумя состояниями: «занят» и «не занят»). Но термин «mutex» чаще используется чтобы описать схему, которая предохраняет два процесса от одновременного использования общих данных/переменных. В то время как термин «бинарный семафор» чаще употребляется для описания конструкции, которая ограничивает доступ к одному ресурсу. То есть бинарный семафор используют там, где один процесс «занимает» семафор, а другой его «освобождает». В то время как мьютекс освобождается тем же процессом/потоком, который занял его.
Без мьютекса не обойтись в написании, к примеру базы данных, к которой доступ могут иметь множество клиентов.
Для использования мьютекса необходимо вызвать функцию pthread_mutex_init():
Функция инициализирует мьютекс (перемнную mutex) аттрибутом mutexattr. Если mutexattr равен NULL, то мьютекс инициализируется значением по умолчанию. В случае успешного выполнения функции (код возрата 0), мьютекс считается инициализированным и «свободным».
Типичные ошибки, которые могут возникнуть:
- EAGAIN — недостаточно необходимых ресурсов (кроме памяти) для инициализации мьютекса
- ENOMEM — недостаточно памяти
- EPERM — нет прав для выполнения операции
- EBUSY — попытка инициализировать мьютекс, который уже был инициализирован, но не унечтожен
- EINVAL — значение mutexattr не валидно
Чтобы занять или освободить мьютекс, используем функции:
Функция pthread_mutex_lock(), если mutex еще не занят, то занимает его, становится его обладателем и сразу же выходит. Если мьютекс занят, то блокирует дальнейшее выполнение процесса и ждет освобождения мьютекса.
Функция pthread_mutex_trylock() идентична по поведению функции pthread_mutex_lock(), с одним исключением — она не блокирует процесс, если mutex занят, а возвращает EBUSY код.
Фунция pthread_mutex_unlock() освобождает занятый мьютекс.
Коды возврата для pthread_mutex_lock():
- EINVAL — mutex неправильно инициализирован
- EDEADLK — мьютекс уже занят текущим процессом
Коды возврата для pthread_mutex_trylock():
- EBUSY — мьютекс уже занят
- EINVAL — мьютекс неправильно инициализирован
Коды возврата для pthread_mutex_unlock():
- EINVAL — мьютекс неправильно инициализирован
- EPERM — вызывающий процесс не является обладателем мьютекса
Пример mutex
mutex.c
Данный пример демонстрирует совместный доступ двух потоков к общей переменной. Один поток (первый поток) в автоматическом режиме постоянно увеличивает переменную counter на единицу, при этом занимая эту переменную на целую секунду. Этот первый поток дает второму доступ к переменной count только на 10 миллисекунд, затем снова занимает ее на секунду. Во втором потоке предлагается ввести новое значение для переменной с терминала.
Если бы мы не использовали технологию «мьютекс», то какое значение было бы в глобальной переменной, при одновременном доступе двух потоков, нам не известно. Так же во время запуска становится очевидна разница между pthread_mutex_lock() и pthread_mutex_trylock().
Компилировать код нужно с дополнительным параметром -lpthread:
Запускаем и меняем значение переменной просто вводя новое значение в терминальном окне:
Вместо заключения
В следующих статьях я хочу рассмотреть технологии d-bus и RPC. Если есть интерес, дайте знать.
Спасибо.
UPD: Обновил 3-ю главу про семафоры. Добавил подглаву про мьютекс.
Источник
Методы межпроцессного взаимодействия linux
Наличие в Unix-системах простых и эффективных средств взаимодействия между процессами оказало программирование в Unix не менее важное влияние, чем представление объектов системы в виде файлов. Благодаря межпроцессному взаимодействию (Inter-Process Communication, IPC) разработчик (и пользователь) может разбить решение сложной задачи на несколько простых операций, каждая из которых доверяется отдельной небольшой программе. Последовательная обработка одной задачи несколькими простыми программами очень похожа на конвейерное производство (среди многих значений английского pipeline есть и «конвейер», но в этой статье мы для перевода слова pipe будем пользоваться принятым в отечественной литературе термином «канал» [3]. Альтернативой конвейерному подходу являются большие монолитные пакеты, построенные по принципу «все в одном». Использование набора простых утилит для решения одной сложной задачи требует несколько большей квалификации со стороны пользователя, но взамен предоставляет гибкость, не достижимую при использовании монолитных «монстров». Наборы утилит, использующих открытые протоколы IPC, легко наращивать и модифицировать. Разбиение сложных задач на сравнительно небольшие подзадачи также позволяет снизить количество ошибок, допускаемых программистами (см. врезку). Помимо всего этого у IPC есть еще одно важное преимущество. Программы, использующие IPC, могут «общаться» друг с другом практически также эффективно, как и с пользователем, в результате чего появляется возможность автоматизировать выполнение сложных задач. Могущество скриптовых языков Unix и Linux во многом основано на возможностях IPC.
Фредерик Брукс, автор книги «Мифический человеко-месяц», высказал предположение (известное как «закон Брукса»), что количество ошибок в проекте должно быть пропорционально квадрату числа участников проекта, тогда как объем полезной работы при увеличении числа участников проекта растет линейно. Закон Брукса означал, что на определенном этапе развития проекта любая попытка привлечь к разработке новых программистов приводит лавинообразному росту числа ошибок (а значит все больше и больше работы требуется на их выявление и исправление). Если бы закон Брукса выполнялся, то для всех проектов существовал бы верхний порог сложности, при попытке превысить который КПД разработки начинал бы стремительно падать. Что же касается открытой модели разработки ПО, то она, с точки зрения закона Брукса, была бы невозможна в принципе. Для того, чтобы понять, в чем Ф. Брукс ошибался, следует рассмотреть исходные посылки его рассуждений. Закон Брукса основан двух предположениях (а) ошибки чаще возникают на стыке элементов проекта, выполняемых разными разработчиками (соответственно, чем больше таких «швов», тем больше ошибок); (б) модель взаимодействия разработчиков представляет собой полный граф (то есть, каждый разработчик взаимодействует со всеми остальными участниками проекта), число ребер которого пропорционально квадрату числа вершин. Ни то, ни другое утверждение, вообще говоря, неверно. В частности, при программировании «канальных» утилит всем участникам проекта нет надобности непосредственно контактировать между собой. Каждая группа разработчиков должна следовать только фиксированному протоколу обмена данными между программами, так что в этом случае число ошибок подчиняется линейной, а не квадратичной, зависимости.
В этой статье мы ограничимся рассмотрением IPC с помощью каналов различных типов. Предполагается, что читатели статьи являются опытными пользователями Linux, и, во всяком случае, знают, как создаются каналы из нескольких программ с помощью командной строки. С точки зрения программиста работа, программ в канале, организованном с помощью символа “|”, выглядит очень просто. Данные со стандартного потока вывода одной программы перенаправляются на стандартный поток ввода другой программы, чей стандартный поток вывода может быть также перенаправлен. Но как быть в том случае, если необходимо использовать канал внутри самой программы?
Неименованные каналы
Как читатель наверняка уже догадался, изюминка программы makelog заключается в использовании функции popen(). Рассмотрим фрагмент исходного текста программы:
Эта операция очень похожа на открытие обычного файла для чтения. Переменная f имеет тип FILE *, но в параметре argv[1] функции popen передается не имя файла, а команда на запуск программы или команды оболочки, например, «ls -al». Если вызов popen() был успешен, мы можем считывать данные, выводимые запущенной командой, с помощью обычной функции fread(3):
Особенность функции popen() заключается в том, что эта функция не возвращает NULL, даже если переданная ей команда не является корректной. Самый простой способ обнаружить ошибку в этой ситуации — попытаться прочесть данные из потока вывода. Если в потоке вывода нет данных (fread() возвращает значение 0), значит произошла ошибка. Для вывода данных, прочитанных с помощью fread(), на терминал мы используем функцию write() с указанием дескриптора стандартного потока вывода:
Параллельно эти же данные записываются в файл на диске. По окончании чтения данных открытый канал нужно закрыть:
Следует иметь в виду, что pclose() вернет управление вызывающему потоку только после того как запущенное с помощью popen() приложение завершит свою работу.
В заключение отметим еще одну особенность функции popen(). Для выполнения переданной ей команды popen() сперва запускает собственный экземпляр оболочки, что с одной стороны хорошо, а с другой — не очень. Хорошо это потому, что при вызове popen() автоматически выполняются внутренние операции оболочки (такие как обработка шаблонов имен файлов), используются переменные окружения типа PATH и HOME и т.п. Отрицательная сторона подхода, применяемого popen(), связана с дополнительными накладными расходы на запуск процесса оболочки в том случае, когда для выполнения команды оболочка не нужна.
Для обмена данными с внешним приложением функция popen() использует каналы неявным образом. В своих программах мы можем использовать каналы и непосредственно. Наиболее распространенный тип каналов, — неименованные однонаправленные каналы (anonymous pipes), создаваемые функцией pipe(2). На уровне интерфейса программирования такой канал представляется двумя дескрипторами файлов, один из которых служит для чтения данных, а другой — для записи. Каналы не поддерживают произвольный доступ, т. е. данные могут считываться только в том же порядке, в котором они записывались. Неименованные каналы используются преимущественно вместе с функцией fork(2) и служат для обмена данными между родительским и дочерним процессами. Для организации подобного обмена данными, сначала, с помощью функции pipe(), создается канал. Функции pipe() передается единственный параметр — массив типа int, состоящий из двух элементов. В первом элементе массива функция возвращает дескриптор файла, служащий для чтения данных из канала (выход канала), а во втором — дескриптор для записи (вход). Затем, с помощью функции fork() процесс «раздваивается». Дочерний процесс наследует от родительского процесса оба дескриптора, открытых с помощью pipe(), но, также как и родительский процесс, он должен использовать только один из дескрипторов. Направление передачи данных между родительским и дочерним процессом определяется тем, какой дескриптор будет использоваться родительским процессом, а какой — дочерним. Продемонстрируем изложенное на простом примере программы pipes.c, использующей функции pipe() и fork().
Оба дескриптора канала хранятся в переменной pipedes. После вызова fork() процесс раздваивается и родительский процесс (тот, в котором fork() вернула ненулевое значение, равное, кстати, PID дочернего процесса) закрывает дескриптор, открытый для чтения, и записывает данные в канал, используя дескриптор, открытый для записи (pipedes[1]). Дочерний процесс (в котором fork() вернула 0) первым делом закрывает дескриптор, открытый для записи, и затем считывает данные из канала, используя дескриптор, открытый для чтения (pipedes[0]). Назначение дескрипторов легко запомнить, сопоставив их с аббревиатурой I/O (первый дескриптор — для чтения (input), второй — для записи (output)). Стандарт POSIX предписывает, чтобы каждый процесс, получивший оба канальных дескриптора, закрывал тот дескриптор, который ему не нужен, перед тем, как начать работу с другим дескриптором, и хотя в системе Linux этим требованием можно пренебречь, лучше все же придерживаться строгих правил. В нашем примере нам не нужно беспокоиться о синхронизации передачи данных, поскольку ядро системы выполнит всю трудную работу за нас. Но в жизни встречаются и не столь тривиальные случаи. Например, ничто не мешает нам создать несколько дочерних процессов с помощью нескольких вызовов fork(). Все эти процессы могут использовать один и тот же канал, при условии, что каждый процесс использует только один из дескрипторов pipdes, согласно его назначению. В этой ситуации нам пришлось бы выполнять синхронизацию передачи данных явным образом.
Для передачи данных по каналу используются специальные объекты ядра системы, называемые буферами каналов (pipe buffers). Даже если предыдущая запись заполнила буфер не полностью, повторная запись данных в буфер становится возможной только после того, как прежде записанные данные будут прочитаны. Это означает, что если разные процессы, пишущие данные в один и тот же канал, передают данные блоками, размеры которых не превышают объем буферов, данные из блоков разных процессов не будут перемешиваться между собой. Использование этой особенности каналов существенно упрощает синхронизацию передачи данных. Узнать размер буфера можно с помощью вызова функции где pipedes — дескриптор канала. На архитектуре IA32 размер буфера составляет 4 килобайта. Начиная с ядра 2.6.11, каждый канал может использовать до 16 буферов, что существенно повышает производительность каналов.
Познакомившись с неименованными каналами, мы можем самостоятельно реализовать аналог функции popen() без «дополнительных расходов» (то есть, без запуска процесса оболочки). Напишем небольшую программу, которая запускает утилиту netstat, читает данные, выводимые этой утилитой, и выводит их на экран. Если бы мы использовали для этой цели функцию popen(), то получили бы доступ к потоку вывода netstat с помощью и скопировали данные на экран. Этот способ прост, но не эффективен. Мы напишем другую программу (файл printns.c). Структура этой программы та же, что и в предыдущем примере, только теперь родительский процесс читает данные с помощью канала. Самое интересное происходит в дочернем процессе, где выполняется последовательность функций:
С помощью функции dup2(2) мы перенаправляем стандартный поток вывода дочернего процесса (дескриптор стандартного потока вывода равен 1) в канал, используя дескриптор pipdes[1], открытый для записи. Далее с помощью функции execve(2) мы заменяем образ дочернего процесса процессом netstat (обратите внимание, что поскольку в нашем распоряжении нет оболочки с ее переменной окружения PATH, путь к исполнимому файлу netstat нужно указывать полностью). В результате родительский процесс может читать стандартный вывод netstat через поток, связанный с дескриптором pipdes[0] (и никакой оболочки!). Именованные каналы
Хотя в приведенном выше примере неименованные каналы используются только для передачи данных между процессами, связанными «родственными узами», существует возможность использовать их и для передачи данных между совершенно разными процессами. Для этого нужно организовать передачу дескрипторов канала между неродственными процессами, как это описано, например, в [2]. Однако, передача дескрипторов стороннему процессу носит скорее характер трюка (или «хака»), и мы на ней останавливаться не будем. Для передачи данных между неродственными процессами мы воспользуемся механизмом именованных каналов (named pipes), который позволяет каждому процессу получить свой, «законный» дескриптор канала. Передача данных в этих каналах (как, впрочем, и в однонаправленных неименованных каналах) подчиняется принципу FIFO (первым записан — первым прочитан), поэтому в англоязычной литературе иногда можно встретить названия FIFO pipes или просто FIFOs. Именованные каналы отличаются от неименованных наличием имени (странно, не правда ли?), то есть идентификатора канала, потенциально видимого всем процессам системы. Для идентификации именованного канала создается файл специального типа pipe. Это еще один представитель семейства виртуальных файлов Unix, не предназначенных для хранения данных (размер файла канала всегда равен нулю). Файлы именованных каналов являются элементами VFS, как и обычные файлы Linux, и для них действуют те же правила контроля доступа. Файлы именованных каналов создаются функцией mkfifo(3). Первый параметр этой функции — строка, в которой передается имя файла, идентифицирующего канал, второй параметр — маска прав доступа к файлу. Функции mkfifo() создает канал и файл соответствующего типа. Если указанный файл канала уже существует, mkfifo() возвращает -1, (переменная errno принимает значение EEXIST). После создания файла канала процессы, участвующие в обмене данными, должны открыть этот файл либо для записи, любо для чтения. После закрытия файла канала, файл (и канал) продолжают существовать. Для того, чтобы закрыть сам канал, нужно удалить его файл, например с помощью последовательных вызовов unlink(2).
Рассмотрим работу именованного канала на примере простой системы клиент- сервер. Программа-сервер создает канал и передает в него текст, вводимый пользователем с клавиатуры. Программа-клиент читает текст и выводит его на терминал. Программы из этого примера можно рассматривать как упрощенный вариант системы мгновенного обмена сообщениями между пользователями многопользовательской ОС. Исходный текст программы-сервера хранится в файле typeserver.c. Вызов функции mkfifo() создает файл-идентификатор канала в рабочей директории программы: где FIFO_NAME — макрос, задающий имя файла канала (в нашем случае — «./fifofile»).
В качестве маски доступа мы используем восьмеричное значение 0600, разрешающее процессу с аналогичными реквизитами пользователя чтение и запись (можно было бы использовать маску 0666, но на мы на всякий случай воздержимся от упоминания Числа Зверя, пусть даже восьмеричного, в нашей программе). Для краткости мы не проверяем значение, возвращенное mkfifo(), на предмет ошибок. В результате вызова mkfifo() с заданными параметрами в рабочей директории программы должен появиться специальный файл fifofile. Файл- менеджер KDE отображает файлы канала с помощью красивой пиктограммы, изображающей приоткрытый водопроводный кран. Далее в программе-сервере мы просто открываем созданный файл для записи:
Считывание данных, вводимых пользователем, выполняется с помощью getchar(), а с помощью функции fputc() данные передаются в канал. Работа сервера завершается, когда пользователь вводит символ “q”. Исходный текст программы-клиента можно найти в файле typeclient.c. Клиент открывает файл fifofile для чтения как обычный файл:
Символы, передаваемые по каналу, считываются с помощью функции fgetc() и выводятся на экран терминала с помощью putchar(). Каждый раз, когда пользователь сервера наживает ввод, функция fflush(), вызываемая сервером (см. файл typeserver.c), выполняет принудительную очистку буферов канала, в результате чего клиент считывает все переданные символы. Получение символа “q” завершает работу клиента.
Скомпилируйте программы typeserver.c и typeclient.c в одной директории. Запустите сначала сервер, потом клиент в разных окнах терминала. Печатайте текст в окне сервера. После каждого нажатия клавиши [Enter] клиент должен отображать строку, напечатанную на сервере.
Для создания файла FIFO можно воспользоваться также функцией mknod(2), предназначенной для создания специальных файлов различных типов (FIFO, сокеты, файлы устройств и обычные файлы для хранения данных). В нашем случае вместо можно было бы написать
Одной из сильных сторон Unix/Linux IPC является возможность организовывать взаимодействие между программами, которые не только ничего не знают друг о друге, но и используют разные механизмы ввода/вывода. Сравним нашу программу typeclient и команду ls. Казалось бы, между ними нет ничего общего — typeclient получает данные, используя именованный канал, а ls выводит содержимое директории в стандартный поток вывода. Однако, мы можем организовать передачу данных от ls к typeclient с помощью всего лишь пары команд bash! В директории программы typeclient дайте команду:
Эта команда создаст файл канала fifofile также, как это сделала бы программа typeserver. Запустите программу typeclient, а затем в другом окне терминала дайте команду, наподобие где /path/fifofile — путь к файлу FIFO. В результате, программа typeclient распечатает содержимое соответствующей директории. Главное, чтобы в потоке данных не встретился символ “q”, завершающий ее работу.
Каналы представляют собой простое и удобное средство передачи данных, которое, однако, подходит не во всех ситуациях. Например, с помощью каналов довольно трудно организовать обмен асинхронными сообщениями между процессами. В следующей статье мы рассмотрим другие средства IPC Unix/Linux — очереди сообщений и семафоры.
Источник