Nvidia cuda driver linux

Содержание
  1. Установка CUDA в Ubuntu
  2. Что такое Nvidia CUDA
  3. Какую версию CUDA выбрать
  4. Установка CUDA из репозиториев Ubuntu
  5. Установка CUDA 9 в Ubuntu
  6. Установка CUDA 6.5, 7 или другой версии
  7. Удаление Cuda из Ubuntu
  8. Выводы
  9. Электрический блогнот
  10. мои заметки на полях
  11. Linux как установить CUDA
  12. Предисловие
  13. Шаг 1 — проверяем nvidia драйвер
  14. Шаг 2 — качаем CUDA Toolkit
  15. Шаг 3 — устанавливаем CUDA Toolkit
  16. Шаг 4 — Тест
  17. Шаг 5 — устанавливаем cuDNN
  18. Выводы
  19. kmhofmann / installing_nvidia_driver_cuda_cudnn_linux.md
  20. This comment has been minimized.
  21. bgyarbro commented Aug 10, 2020
  22. This comment has been minimized.
  23. PSS67 commented Sep 12, 2020
  24. This comment has been minimized.
  25. prikmm commented Nov 18, 2020 •
  26. Update:
  27. This comment has been minimized.
  28. aloizo03 commented Nov 23, 2020
  29. This comment has been minimized.
  30. emenshoff commented Dec 4, 2020
  31. This comment has been minimized.
  32. johndpope commented Dec 18, 2020 •
  33. This comment has been minimized.
  34. saidmithilesh commented Jan 22, 2021
  35. This comment has been minimized.
  36. aloizo03 commented Jan 22, 2021
  37. This comment has been minimized.
  38. kyleawayan commented Feb 19, 2021
  39. This comment has been minimized.
  40. hrithikppawar commented Mar 8, 2021
  41. This comment has been minimized.
  42. SakibFarhad commented Mar 9, 2021
  43. This comment has been minimized.
  44. hrithikppawar commented Mar 9, 2021
  45. This comment has been minimized.
  46. tyuvraj commented May 22, 2021 •
  47. Update:

Установка CUDA в Ubuntu

Видеокарты уже давно перестали быть только устройствами, способными рисовать красивую графику в играх. Перед ними всё чаще ставят задачи, связанные со сложными математическими вычислениями, расчётами и искусственным интеллектом. Видеокарты намного лучше справляются с такими заданиями, чем обычные процессоры. Именно для того, чтобы обеспечить работу своих карт в этой сфере, NVIDIA выпустила платформу CUDA (Compute Unified Device Architecture).

В этой статье мы рассмотрим, как выполняется установка Cuda Ubuntu, как установить библиотеки и окружение для разработки, а также необходимую версию программы.

Что такое Nvidia CUDA

Архитектура CUDA позволяет разработчикам использовать вычислительные возможности видеокарт Nvidia для параллельных расчётов. Это очень сильно повышает производительность программ, которым нужно решать много однообразных задач. Одни из самых популярных способов применения CUDA — это майнинг криптовалюты, а также разработки в сфере искусственного интеллекта.

Платформа позволяет программистам самим управлять доступными инструкциями видеоускорителя, а также распределять память. Все программы пишутся на Си-подобном языке программирования.

Какую версию CUDA выбрать

На данный момент самая свежая версия NVIDIA CUDA Ubuntu — девятая. Если вы собрались создавать собственное программное обеспечение на основе этой платформы, лучше всего начать с этой или восьмой версии. Но если вам нужно запустить в системе программу, которая уже собрана под определенный вариант CUDA, то вам придется ставить именно его. Потому что между более старыми и новыми вариациями есть серьезные отличия, и приложение может попросту не заработать. Попытайтесь запустить нужную вам программу и посмотрите, каких библиотек ей не хватает в сообщении об ошибке:

Или же эту информацию можно найти в описании программы. Обычно разработчики пишут, какая версия CUDA нужна для работы. А теперь давайте рассмотрим, как выполняется установка CUDA на Ubuntu 16.04, 17.10 и другие модификации этого дистрибутива.

Установка CUDA из репозиториев Ubuntu

Нужно отметить, что для успешной работы Nvidia, CUDA необходимо, чтобы уже был установлен драйвер NVIDIA. Сейчас в официальных репозиториях Ubuntu находится восьмая версия платформы. Вы можете без проблем её установить, выполнив всего несколько команд. Сначала обновите списки пакетов:

sudo apt update

Затем наберите такую команду, чтобы установить CUDA Ubuntu:

sudo apt install nvidia-cuda-toolkit

Если вам также нужны заголовочные файлы для разработки, то понадобится дополнительно установить пакет nvidia-cuda-dev:

sudo apt install nvidia-cuda-dev

Установка платформы может длиться достаточно много времени, поскольку все необходимые библиотеки занимают около одного гигабайта. После завершения установки вы можете проверить, всё ли работает, выполнив:

Установка CUDA 9 в Ubuntu

Самая свежая на данный момент, как уже упоминалось, версия — Nvidia Cuda 9.0. Она включает некоторые алгоритмы для ускорения вычислений в приложениях AI и HPC на видеокартах NVIDIA Volta. Кроме того, были исправлены некоторые ошибки и проблемы платформы. Но для девятки нужен свежий драйвер Nvidia 384. Установить его вы можете с официального сайта.

Тут вам необходимо выбрать операционную систему, архитектуру и дистрибутив Linux, а в самом конце — способ установки (deb-пакет).

Только после этого появиться ссылка на установщик. Скачайте его, нажав кнопку Download 1.2 GB, и запустите установку с помощью dpkg:

Перед тем, как будет выполнена установка CUDA 9 Ubuntu, вам необходимо добавить ключ репозитория:

sudo apt-key add /var/cuda-repo-ubuntu1704-9-1-local_9.1.85-1/7fa2af80.pub

И обновить список пакетов:

sudo apt update

Затем можно установить CUDA 9 в Ubuntu:

sudo apt install cuda cuda-libraries-9.1

Готово, теперь можете проверить версию:

Установка CUDA 6.5, 7 или другой версии

Для многих программ необходима определенная версия CUDA, например, многие майнеры были собраны только с версией 6.5, и поэтому вам нужно будет установить именно эти библиотеки, чтобы всё заработало. На сайте Nvidia есть архив со всеми предыдущими версиями платформы. Рассмотрим установку на примере версии 6.5. Первое, что вам нужно выбрать — версия:

Затем выберите операционную систему Linux x86:

А дальше установочный deb-пакет для Ubuntu 14.04. Проверено на Ubuntu 17.10: установка работает. После загрузки пакета репозитория выполните:

sudo apt install

Далее обновите список пакетов:

sudo apt update

Осталась установка CUDA Ubuntu нужной вам версии:

sudo apt install nvidia-cuda-6.5

Поскольку программа размещается в /usr/local, нужно добавить путь к её папке в переменную среды PATH и LD_PRELOAD:

/.bashrc
echo «export PATH=/usr/local/cuda-6.5/bin:$PATH» >>

/.bashrc
echo «export LD_LIBRARY_PATH=/usr/local/cuda-6.5/lib64:$LD_LIBRARY_PATH» >>

Готово, после этого можно проверять версию:

Читайте также:  Техническая служба поддержки windows

Удаление Cuda из Ubuntu

Удалить Nvidia CUDA вы можете также, как и устанавливали. Еесли вы ставили nvidia-cuda-toolkit, то для удаления достаточно набрать:

sudo apt purge nvidia-cuda-toolkit

Или для версии 6.5:

sudo apt purge nvidia-cuda-toolkit-6.5

Также не забудьте удалить репозиторий:

sudo apt purge cuda-repo-ubuntu1404

Имя пакета может отличаться в зависимости от версии. Если вы выполняли установку с помощью бинарного файла или из исходников, то для удаления нужно использовать скрипт, который вы применяли при инсталляции.

Выводы

В этой небольшой статье мы рассмотрели, как выполняется установка CUDA Ubuntu 17.10 и в других версиях этой операционной системы. Как видите, это не так сложно, и вы можете установить не только последнюю версию, но и ту, которая вам нужна.

Источник

Электрический блогнот

мои заметки на полях

Linux как установить CUDA

Установить CUDA (Compute Unified Device Architecture) библиотеки в Linux очень легко и в тоже время сложно. Казалось бы, что тут сложного, сделай какой-нибудь apt-get install cuda или yum install cuda и система на автомате все сама установит. Действительно, во многих случаях этого достаточно, но, как говорится, есть нюансы.

Так вот, чтобы использовать всю мощь вашей графической карты необходимо выполнение следующих условий:

  1. Наличие карты Nvidia (будем считать, что она уже есть);
  2. Установленные в системе драйвера от Nvidia (будем исходить из того, что тоже установлены);
  3. CUDA Toolkit, те самые библиотеки и программы, которые чаще всего для простоты называют CUDA (без Toolkit)

Вот пунктом номер 3 мы и будем заниматься в этой статье.
Все последующие шаги будут приведены для Ubuntu 18.04 (самая популярная система), но они так же подойдут и для других дистрибутивов Linux.

Предисловие

Устанавливать CUDA будем от обычного пользователя, в домашнюю папку. Я не сторонник установки в /usr/local таких вещей, которые часто приходится обновлять. Лучше поставить куда-нибудь в безопасное место, чтобы не запороть работающую систему. Например, /home/username/cuda подойдет отлично. Надоест эксперементировать с CUDA, просто удалите эту папку и все. И не надо заботиться, что какие-то зависимости нарушились в системе.

Шаг 1 — проверяем nvidia драйвер

Исходим из того, что Nvidia карточка у ва есть и nvidia драйвер установлен в систему и запущен.

Проверяем:
lsmod | grep -i nvidia
вывод должен быть похожим на следующий:

Далее определяем версию nvidia драйвера с помощью команды modinfo:

Есть еще один способ определить версию драйвера. Для этого воспользуемся утилитой nvidia-smi:

Nvidia-smi так же выдала версию 435.21.
Если nvidia-smi не будет в вашей системе, то пользуйтесь способом с modinfo.

Шаг 2 — качаем CUDA Toolkit

Между весрией Nvidia драйвера и версией CUDA Toolkit существует связь. Для определенной версии Nvidia драйвера нужно скачивать и устанавливать строго соответствующий пакет CUDA Toolkit, иначе ничего не получится. Опять же есть два способа определить версию CUDA Toolkit.

Первый способ:
идем на страницу cuda toolkit release notes и в таблице «Table 1. CUDA Toolkit and Compatible Driver Versions» ищем нужное соотвествие между версией драйвера и версией CUDA Toolkit:

Например, на моем ноуте установлен nvidia драйвер версии 435.21, значит мне подойдут все версии CUDA Toolkit кроме 10.2. Иными словами 10.1 включительно и ниже.
Если у вас драйвер версии 390, то CUDA Toolkit надо скачивать версии 9.1 и ниже.

Второй способ:
можно снова воспользоваться утилитой nvidia-smi:

здесь четко написано, для вашего драйвера нужна CUDA 10.1.

После того, как определились с версией CUDA Toolkit идем и скачиваем его со страницы:
https://developer.nvidia.com/cuda-toolkit-archive


Здесь выбираем:
Linux -> x86_64 -> Ubuntu -> 18.04 -> runfile (local)

После скачивания в директории для загрузок появится файл:
cuda_10.1.105_418.39_linux.run

Шаг 3 — устанавливаем CUDA Toolkit

Инсталлер скачан. Сделаем его исполняемым:

И сразу же запускаем:

Запускается долго (наверняка происходит самораспаковка).

После соглашения с EULA появляется экран:

Как видите здесь размечен драйвер, мы его устанавливать не будем, он уже в системе и запущен.

Далее наводи курсор на «CUDA Toolkit 10.1» и жмем букву «A», тем самым переходя к расширенным настройкам:

Здесь делаем неактивными все позиции, как на скриншоте и переходим в «Change Toolkit Installation Path» и вводим имя директории для установки:

в прцессе установки нужно будет еще ввести «Root install path» вводим туже саму директорию:

Когда установка завершится нужно будет дать системе знать куда установлена CUDA, для этого в файл

/.bashrc прописываем следующие строки:

На этом установка закончена.

Шаг 4 — Тест

Тестируем связку CUDA и драйвера Nvidia. Для этого воспользуемся примеры из устанвки CUDA.
Возьмем тест с частицами.

Как видно из рисунка, тест запустился и судя по выводу nvidia-smi на 24% нагружает видеокарту. Буковки C+G перед ./particles говорят о том, что задействованы и вычислительные (С) и графические (G) ресурсы видеокарты.

Шаг 5 — устанавливаем cuDNN

Если вы планируете использовать CUDA в машинном обучении, то просто необходимо устанвить библиотеку cuDNN. Этабиблиотека позволяет максимально эффективно использовать мощности графического ускорителя при работе с нейронными сетями. Ставится cuDNN элементрано:
1) регистрируетесь;
2) скачиваете нужную версию (для каждой CUDA своя cuDNN);
3) распаковываете архив в папку куда установлена CUDA.

Выводы

В данной статье приведено описание способа установки CUDA библиотек в Linux в случае, когда графический драйвер уже установлен, а у пользователя нет прав администратора.

Источник

kmhofmann / installing_nvidia_driver_cuda_cudnn_linux.md

Installing the NVIDIA driver, CUDA and cuDNN on Linux (Ubuntu 20.04)

This is a companion piece to my instructions on building TensorFlow from source. In particular, the aim is to install the following pieces of software

on an Ubuntu Linux system, in particular Ubuntu 20.04.

At the time of writing (2020-08-06), these were the latest available versions. As a disclaimer, please note that I am not interested in running an outdated Ubuntu version or installing a CUDA/cuDNN version that is not the latest. Therefore, the below instructions may or may not be useful to you. Please also note that the instructions are likely outdated, since I only update them occasionally. Don’t just copy these instructions, but check what the respective latest versions are and use these instead!

Читайте также:  Test node js windows

Installing the NVIDIA driver

Download and install the latest NVIDIA graphics driver from here: https://www.nvidia.com/en-us/drivers/unix/. Note that every CUDA version requires a minimum version of the driver; check this beforehand.

Ubuntu 20.04 currently offers installation of the NVIDIA driver version 440.100 through its built-in ‘Additional Drivers’ mechanism, which should be sufficient for CUDA 10.2. CUDA 11.0 appears to require a newer version of the NVIDIA driver, so we’re going to install this manually.

Download and install the latest NVIDIA graphics driver from here: https://www.nvidia.com/en-us/drivers/unix/.

The CUDA runfile also includes a version of the NVIDIA graphics driver, but I like to separate installing either, as the version supplied with CUDA Is not necessarily the latest version of the driver.

Download the latest CUDA version here. For example, I downloaded:

Thankfully, CUDA 11 currently supports the up-to-date Ubuntu version, 20.04, so we don’t need to jump through hoops to deal with an unsupported GNU version error as in previous versions of this document. Simply install as per the official instructions:

You may need to confirm that the display driver is already installed, and de-select installation of the display driver.

Once finished, you should see a summary like this:

Do what the instructions given in the summary say and add the given directories to your PATH and LD_LIBRARY_PATH . For example by adding the following lines to your .bashrc , .zshrc , or whatever shell you are using:

Just go here and follow the instructions. You’ll have to log in, so downloading of the right cuDNN binary packages cannot be easily automated. Meh.

Once downloaded, un-tar the file and copy the contents to their respective locations:

This comment has been minimized.

Copy link Quote reply

bgyarbro commented Aug 10, 2020

Thank you for this tutorial! This is awesome info. I was able to get it setup easily.

This comment has been minimized.

Copy link Quote reply

PSS67 commented Sep 12, 2020

Thanks. Do you know if this will work on WSL2 (with Ubuntu 20.04)?

This comment has been minimized.

Copy link Quote reply

prikmm commented Nov 18, 2020 •

Update:

Hey, I downloaded using package manager. Everything went great and i was able to use tensorflow on gpu. But, while running ldconfig, I see the following error:
/sbin/ldconfig.real: /usr/local/cuda-11.0/targets/x86_64-linux/lib/libcudnn_ops_train.so.8 is not a symbolic link /sbin/ldconfig.real: /usr/local/cuda-11.0/targets/x86_64-linux/lib/libcudnn_ops_infer.so.8 is not a symbolic link /sbin/ldconfig.real: /usr/local/cuda-11.0/targets/x86_64-linux/lib/libcudnn_adv_train.so.8 is not a symbolic link /sbin/ldconfig.real: /usr/local/cuda-11.0/targets/x86_64-linux/lib/libcudnn_cnn_infer.so.8 is not a symbolic link /sbin/ldconfig.real: /usr/local/cuda-11.0/targets/x86_64-linux/lib/libcudnn_cnn_train.so.8 is not a symbolic link /sbin/ldconfig.real: /usr/local/cuda-11.0/targets/x86_64-linux/lib/libcudnn_adv_infer.so.8 is not a symbolic link /sbin/ldconfig.real: /usr/local/cuda-11.0/targets/x86_64-linux/lib/libcudnn.so.8 is not a symbolic link

To check I went to:
/usr/local/cuda-11.0/targets/x86_64-linux/lib
and did:
ls -ln

Among all the symlinks I got as my ouput, I saw:
-rwxr-xr-x 1 0 0 98957080 Nov 18 13:54 libcudnn_adv_infer.so
-rwxr-xr-x 1 0 0 98957080 Nov 18 13:54 libcudnn_adv_infer.so.8
-rwxr-xr-x 1 0 0 98957080 Nov 18 13:54 libcudnn_adv_infer.so.8.0.5
-rwxr-xr-x 1 0 0 65344120 Nov 18 13:54 libcudnn_adv_train.so
-rwxr-xr-x 1 0 0 65344120 Nov 18 13:54 libcudnn_adv_train.so.8
-rwxr-xr-x 1 0 0 65344120 Nov 18 13:54 libcudnn_adv_train.so.8.0.5
-rwxr-xr-x 1 0 0 1288305728 Nov 18 13:55 libcudnn_cnn_infer.so
-rwxr-xr-x 1 0 0 1288305728 Nov 18 13:55 libcudnn_cnn_infer.so.8
-rwxr-xr-x 1 0 0 1288305728 Nov 18 13:55 libcudnn_cnn_infer.so.8.0.5
-rwxr-xr-x 1 0 0 58705816 Nov 18 13:55 libcudnn_cnn_train.so
-rwxr-xr-x 1 0 0 58705816 Nov 18 13:55 libcudnn_cnn_train.so.8
-rwxr-xr-x 1 0 0 58705816 Nov 18 13:55 libcudnn_cnn_train.so.8.0.5
-rwxr-xr-x 1 0 0 251390696 Nov 18 13:55 libcudnn_ops_infer.so
-rwxr-xr-x 1 0 0 251390696 Nov 18 13:55 libcudnn_ops_infer.so.8
-rwxr-xr-x 1 0 0 251390696 Nov 18 13:55 libcudnn_ops_infer.so.8.0.5
-rwxr-xr-x 1 0 0 26002104 Nov 18 13:55 libcudnn_ops_train.so
-rwxr-xr-x 1 0 0 26002104 Nov 18 13:55 libcudnn_ops_train.so.8
-rwxr-xr-x 1 0 0 26002104 Nov 18 13:55 libcudnn_ops_train.so.8.0.5
-rwxr-xr-x 1 0 0 158264 Nov 18 13:55 libcudnn.so
-rwxr-xr-x 1 0 0 158264 Nov 18 13:55 libcudnn.so.8
-rwxr-xr-x 1 0 0 158264 Nov 18 13:55 libcudnn.so.8.0.5

I got confused whether this files are to be completely removed or symlinks are to be created for then, and while copy pasting they got messed.
While searching on the web for this answer I came across one command for checking cudnn:
/sbin/ldconfig -N -v $(sed ‘s/:/ /’ /dev/null | grep libcudnn

I ran the above command (I don’t know what it means, thought of understanding how it works after seeing the output, but got even more confused), and got something like below:
sed: -e expression #1, char 1: unknown command: ‘�’
libcudnn_ops_train.so.8 -> libcudnn_ops_train.so.8.0.5
libcudnn_ops_infer.so.8 -> libcudnn_ops_infer.so.8.0.5
libcudnn_adv_train.so.8 -> libcudnn_adv_train.so.8.0.5
libcudnn_cnn_infer.so.8 -> libcudnn_cnn_infer.so.8.0.5
libcudnn_cnn_train.so.8 -> libcudnn_cnn_train.so.8.0.5
libcudnn_adv_infer.so.8 -> libcudnn_adv_infer.so.8.0.5
libcudnn.so.8 -> libcudnn.so.8.0.5

Now, I don’t know what to do whether to generate symlinks or remove libcudnn* files from /usr/local/cuda-11.0/targets/x86_64-linux/lib.
Kindly help me.

Thank you in advance 🙂

PS: If I have to create symlinks, then it would be helpful if I can get an example using one of the ones that have to be created, I just started using linux and am not to familiar with it. 🙂

This comment has been minimized.

Copy link Quote reply

aloizo03 commented Nov 23, 2020

Hello i want to install cuda 11 in Ubuntu 18.04 this installation tutorial i will be okay ?

This comment has been minimized.

Copy link Quote reply

emenshoff commented Dec 4, 2020

Hello i want to install cuda 11 in Ubuntu 18.04 this installation tutorial i will be okay ?

It works fine, but I, personaly was not able to build working version of tensorflow in Uabuntu 18.04 with cuda 11

Читайте также:  Что такое rc local linux

This comment has been minimized.

Copy link Quote reply

johndpope commented Dec 18, 2020 •

you may find more solace in using POP-OS — latest nvidia drivers out of the box. https://pop.system76.com/
I added a request to create a new distro for ML — https://github.com/pop-os/iso/issues/270 / we should be able to get something off the shelf like AWS / AMI.

CHECK LATEST CUDNN versions on https://docs.nvidia.com/deeplearning/cudnn/install-guide/index.html
sudo apt-get install libcudnn8=8.0.5.39-1+cuda11.1
sudo apt-get install libcudnn8-dev=8.0.5.39-1+cuda11.1

This comment has been minimized.

Copy link Quote reply

saidmithilesh commented Jan 22, 2021

Hello i want to install cuda 11 in Ubuntu 18.04 this installation tutorial i will be okay ?

This comment has been minimized.

Copy link Quote reply

aloizo03 commented Jan 22, 2021

Hello i want to install cuda 11 in Ubuntu 18.04 this installation tutorial i will be okay ?

Thanks for the help i solve this problem 2 months ago the issue was at the nvidia driver and the cuda version

This comment has been minimized.

Copy link Quote reply

kyleawayan commented Feb 19, 2021

Thanks for this guide! Unfortunately on Ubuntu 20.04.2 LTS, the tar file installation didn’t really work as there were missing files (at least when using dlib ). I downloaded the two runtime and developer deb files for Ubuntu 20.04 from NVIDIA, installed them using sudo dpkg -i libcudnn8_8.1.0.77-1+cuda11.2_amd64.deb and sudo dpkg -i libcudnn8-dev_8.1.0.77-1+cuda11.2_amd64.deb , and it worked with dlib .

This comment has been minimized.

Copy link Quote reply

hrithikppawar commented Mar 8, 2021

Hello!
I am going to start a project on Object Detection so I want to use the Tensorflow framework but can Tesorflow supports Cuda-11.0 or I need to install any other version on Cuda.

Can anyone brief me about how I should set up my development environment? I am using Ubuntu-20.10 with Nvidia’s GPU.

This comment has been minimized.

Copy link Quote reply

SakibFarhad commented Mar 9, 2021

Hello!
I am going to start a project on Object Detection so I want to use the Tensorflow framework but can Tesorflow supports Cuda-11.0 or I need to install any other version on Cuda.

Can anyone brief me about how I should set up my development environment? I am using Ubuntu-20.10 with Nvidia’s GPU.

You can use cuda-11.0, It is supported now as per this https://www.tensorflow.org/install/source#gpu

This comment has been minimized.

Copy link Quote reply

hrithikppawar commented Mar 9, 2021

Hello!
I am going to start a project on Object Detection so I want to use the Tensorflow framework but can Tesorflow supports Cuda-11.0 or I need to install any other version on Cuda.
Can anyone brief me about how I should set up my development environment? I am using Ubuntu-20.10 with Nvidia’s GPU.

Thank you for your response!

I successfully installed the cuda-11.0 and it is working great with tensorflow.

I think the best configuration is:

This worked for me

This comment has been minimized.

Copy link Quote reply

tyuvraj commented May 22, 2021 •

Update:

Hey, I downloaded using package manager. Everything went great and i was able to use tensorflow on gpu. But, while running ldconfig, I see the following error:
/sbin/ldconfig.real: /usr/local/cuda-11.0/targets/x86_64-linux/lib/libcudnn_ops_train.so.8 is not a symbolic link /sbin/ldconfig.real: /usr/local/cuda-11.0/targets/x86_64-linux/lib/libcudnn_ops_infer.so.8 is not a symbolic link /sbin/ldconfig.real: /usr/local/cuda-11.0/targets/x86_64-linux/lib/libcudnn_adv_train.so.8 is not a symbolic link /sbin/ldconfig.real: /usr/local/cuda-11.0/targets/x86_64-linux/lib/libcudnn_cnn_infer.so.8 is not a symbolic link /sbin/ldconfig.real: /usr/local/cuda-11.0/targets/x86_64-linux/lib/libcudnn_cnn_train.so.8 is not a symbolic link /sbin/ldconfig.real: /usr/local/cuda-11.0/targets/x86_64-linux/lib/libcudnn_adv_infer.so.8 is not a symbolic link /sbin/ldconfig.real: /usr/local/cuda-11.0/targets/x86_64-linux/lib/libcudnn.so.8 is not a symbolic link

To check I went to:
/usr/local/cuda-11.0/targets/x86_64-linux/lib
and did:
ls -ln

Among all the symlinks I got as my ouput, I saw:
-rwxr-xr-x 1 0 0 98957080 Nov 18 13:54 libcudnn_adv_infer.so
-rwxr-xr-x 1 0 0 98957080 Nov 18 13:54 libcudnn_adv_infer.so.8
-rwxr-xr-x 1 0 0 98957080 Nov 18 13:54 libcudnn_adv_infer.so.8.0.5
-rwxr-xr-x 1 0 0 65344120 Nov 18 13:54 libcudnn_adv_train.so
-rwxr-xr-x 1 0 0 65344120 Nov 18 13:54 libcudnn_adv_train.so.8
-rwxr-xr-x 1 0 0 65344120 Nov 18 13:54 libcudnn_adv_train.so.8.0.5
-rwxr-xr-x 1 0 0 1288305728 Nov 18 13:55 libcudnn_cnn_infer.so
-rwxr-xr-x 1 0 0 1288305728 Nov 18 13:55 libcudnn_cnn_infer.so.8
-rwxr-xr-x 1 0 0 1288305728 Nov 18 13:55 libcudnn_cnn_infer.so.8.0.5
-rwxr-xr-x 1 0 0 58705816 Nov 18 13:55 libcudnn_cnn_train.so
-rwxr-xr-x 1 0 0 58705816 Nov 18 13:55 libcudnn_cnn_train.so.8
-rwxr-xr-x 1 0 0 58705816 Nov 18 13:55 libcudnn_cnn_train.so.8.0.5
-rwxr-xr-x 1 0 0 251390696 Nov 18 13:55 libcudnn_ops_infer.so
-rwxr-xr-x 1 0 0 251390696 Nov 18 13:55 libcudnn_ops_infer.so.8
-rwxr-xr-x 1 0 0 251390696 Nov 18 13:55 libcudnn_ops_infer.so.8.0.5
-rwxr-xr-x 1 0 0 26002104 Nov 18 13:55 libcudnn_ops_train.so
-rwxr-xr-x 1 0 0 26002104 Nov 18 13:55 libcudnn_ops_train.so.8
-rwxr-xr-x 1 0 0 26002104 Nov 18 13:55 libcudnn_ops_train.so.8.0.5
-rwxr-xr-x 1 0 0 158264 Nov 18 13:55 libcudnn.so
-rwxr-xr-x 1 0 0 158264 Nov 18 13:55 libcudnn.so.8
-rwxr-xr-x 1 0 0 158264 Nov 18 13:55 libcudnn.so.8.0.5

I got confused whether this files are to be completely removed or symlinks are to be created for then, and while copy pasting they got messed.
While searching on the web for this answer I came across one command for checking cudnn:
/sbin/ldconfig -N -v $(sed ‘s/:/ /’ /dev/null | grep libcudnn

I ran the above command (I don’t know what it means, thought of understanding how it works after seeing the output, but got even more confused), and got something like below:
sed: -e expression #1, char 1: unknown command: ‘�’
libcudnn_ops_train.so.8 -> libcudnn_ops_train.so.8.0.5
libcudnn_ops_infer.so.8 -> libcudnn_ops_infer.so.8.0.5
libcudnn_adv_train.so.8 -> libcudnn_adv_train.so.8.0.5
libcudnn_cnn_infer.so.8 -> libcudnn_cnn_infer.so.8.0.5
libcudnn_cnn_train.so.8 -> libcudnn_cnn_train.so.8.0.5
libcudnn_adv_infer.so.8 -> libcudnn_adv_infer.so.8.0.5
libcudnn.so.8 -> libcudnn.so.8.0.5

Now, I don’t know what to do whether to generate symlinks or remove libcudnn* files from /usr/local/cuda-11.0/targets/x86_64-linux/lib.
Kindly help me.

Thank you in advance 🙂

PS: If I have to create symlinks, then it would be helpful if I can get an example using one of the ones that have to be created, I just started using linux and am not to familiar with it. 🙂

Источник

Оцените статью