Причесываем трафик — динамический шейпер на Linux
Предположим у вас есть домашняя сеть (или не домашняя, а сеть небольшого офиса) с выходом в интернет через не очень скоростной канал. А пользователей — много, и каждый хочет что-то скачивать, да с максимальной скоростью. Вот тут перед нами встатет задача, как максимально эффективно распределить наш интернет-канал между пользователями так, чтобы они не мешали друг другу. В этой статье я опишу, как можно решить такую задачу с помощью Linux-сервера.
Сформулируем, что же мы хотим получить в результате:
1. Чтобы канал поровну делился между пользователями.
2. Чтобы канал зря не простаивал.
3. Чтобы онлайн-игры, ssh и telnet не «лагали» даже при полной загрузке канала, например торрентами.
Если интернетом будут одновременно пользоваться 10 пользователей — каждый получит в свое распоряжение 1/10 часть канала, если в данный момент активен только один пользователь — он будет использовать весь канал сам.
Добиться этого можно используя планировщик пакетов HTB, который входит в ядро linux начиная с версии 2.4.20.
Можно конфигурировать шейпер с помощью команды tc, но для более удобной и наглядной настройки я рекомендую скачать скрипт htb.init. Они использует для конфигурации htb набор конфигурационных файлов, именуемых так, что при сортировке по алфавиту их имена позволяют визуально представить себе дерево классов шейпера и удобно его редактировать.
Предположим, что у нас на сервере есть интерфейс eth0, через который мы подключены к интернет, и eth1, который «смотрит» в локальную сеть.
Управлять можно только исходящим из интерфейса трафиком, поэтому для eth0 будут правила для upload трафика пользователей, а для — eth1 — download трафика.
По умолчанию конфигурационные файлы htb.init находятся в /etc/htb/. Для начала напишем правила шейпинга для upload трафика, они у нас будут простые.
Создаем файл с именем eth0 (интерейс «смотрящий» в интернет), в него напищем следующие строки:
DEFAULT=20
R2Q=1
Параметр DEFAULT задает номер класса, к которому будет относиться трафик «по умолчанию» — обычно это класс с минимальным приоритетом. Параметр R2Q влияет на работу алгоритма разделения канала и зависит от ширины канала. Я подбирал его значение эмпирическим путем, для моего исходящего канала в 2 Mbit.
Далее, создадим файл eth0-2.full2MBit, для класса включающего в себя весь доступный интернет-канал. Имя файла состоит из имени интерфейса и id класса, после точки идет смысловое имя класса, используется как комментарий и системой игнорируется.
RATE=2Mbit
CEIL=2Mbit
RATE — это наша гарантированная полоса, CEIL — максимальная полоса. Так как у меня канал с гарантированной максимальной полосой в 2 Mbit, то эти параметры у меня равны.
Теперь мы создадим по одному файлу для каждого класса трафика, который у нас будет. Я у себя создал отдельные классы для ssh трафика, а так же трафика игр World Of Warcraft и Counter Strike, хотя вы можете сделать для всего высокоприоритетного трафика один класс.
Пример для ssh — создаем файл eth0-2:10.ssh. В имени файла через двоеточие указан id родительского класса 2 и id текущего класса — 10. Идентификаторы для класса вы можете выбирать произвольно.
# class for outgoing ssh
RATE=128Kbit
CEIL=2Mbit
RULE=*:22
PRIO=1
BURST=100Kb
В параметре RATE указана гарантированная полоса для этого класса, в CEIL — максимальная. Мы выделяем для ssh 128 KBit (как минимум) и разрешаем ему загрузить весь канал (я закачивать файлы по sftp). PRIO задает приоритет класса трафика (1- максимальный, чем больше число — тем меньш приоритет). BURST задает максимальный объем трафика, который будет передан на максимальной скорости перед тем, как перейти к передаче данных из дургих классов. Установив этот параметр в достаточно высокое значение мы добиваемся того, что трафик ssh будет передан с минимальными задержками.
RULE задает правило, по которому будет отбираться трафик в этот класс.
Формат — RULE=[[saddr[/prefix]][:port[/mask]],][daddr[/prefix]][:port[/mask]]
Обратите внимание на запятую! RULE=*:22 обозначает трафик, у которого порт назначения 22, а RULE=*:22, обозначает трафик, у которого исходящий порт — 22.
Создадим так же классы для других видов трафика, и класс для трафика «по умолчанию» с id 20 (мы указали вначале что именно в класс номер 20 надо направлять трафик «по умолчанию»). В нем укажем используемую дисциплину разделения канала LEAF=sfq, для того чтобы upload поровну делился между TCP сессиями разных пользователей.
Для eth1 правила будут почти такие же, только с учетом что общая ширина канала — 100 Mbit, мы ведь хотим чтобы можно было обращаться к локальным ресурсам сервера на полной скорости, для интернет-трафика выделен отдельный класс на 2 MBit, у которого как потомки добавлены классы отдельных пользователей, разделение по классам я делал по IP адресам. Для каждого пользователя можно указать максимальную и гарантированную скорость, а так же приоритет.
После правки конфигурации перезапускаем htb.init:
/etc/init.d/htb.init restart
И правила шейпинга трафика сразу же вступают в силу.
В процессе состевления правил обычно возникает необходимость как-то визуализировать трафик, в целях отладки и мониторинга, поэтому решил написать плагин для системы мониторинга серверов munin, который бы визуализировал распределение по классам HTB трафика. Выводить решил загрузку только классов-листьев дерева, так как именно они обычно несут смысловую нагрузку.
Скачать плагин вы можете из официального репозитория плагинов munin, называется он qos_, просто скопируйте его в папку плагинов munin /usr/share/munin/plugins/ и в папке используемых плагинов /etc/munin/plugins сделайте на него символическую ссылку вида qos_eth1, где eth1 — имя интерфейса, на котором нужно мониторить загрузку.
В файле конфигурации плагинов можно добавить следущее:
[qos_eth1]
env.ignore_queue1_10 yes
env.label_name1_31 Viperet
env.label_name1_32 Cornet
Параметр env.ignore_queue позволяет не отображать на графике состояние класса с указанным id, а параметр env.label_name — задать человекопонятную метку для класса на графике.
В итоге должно получиться что то такое:
Хочу заметить, что у меня несколько нетипичная ситуация, два интернет канала на 2 и 1 Mbit, и для каждого пользователя ограничение в 2 Mbit скорости загрузки, поэтому на графике видно, что если активен один пользователь — его скорость урезается на 2 Mbit, а если несколько — суммарная скорость может достигать и трех. На таком достаточно «тесном» канале работают более 20 человек, и вполне комфортно себя чувствуют, не мешая друг другу.
Эта картинка с реально действующего сервера, и она обновляется каждые 5 минут и отображает актуальную картину загрузки канала.
Источник
Ограничиваем входящий и исходящий трафик в Linux
В данной статье хочу рассказать, как я строил систему ограничения входящего и исходящего трафика в Linux.
Как и учет трафика, ограничение полосы пропускания в сети является очень важной задачей, хотя первое с каждым годом всё быстрее отходит на второй план, шейпинг трафика остается необходимой задачей каждого системного/сетевого администратора.
Какие есть способы ограничения трафика?
Для того, чтобы ответить на этот вопрос нужно определиться для чего этот трафик ограничивать вообще.
Взяв за основу мою сеть из, примерно, 50 рабочих мест, которые выходят в интернет через шлюз, под управлением ОС Ubuntu и некоторые из пользователей пользуются локальными ресурсами на этом сервере по протоколу SMB.
Моя цель ограничить пользователям скорость передачи данных в Интернет со справедливым разделением полосы пропускания между ними.
Исходя из моих задач, для ограничения полосы пропускания можно использовать следующие методы:
1. Ограничение с помощью прокси-сервера Squid.
Данный метод позволяет довольно гибко контролировать весь www,ftp трафик пользователей с возможностью гибкого ограничения скорости пропускания.
2. Использование traffic control из iproute2.
Очень гибкий и оптимальный метод ограничения трафика, но не предоставляющий контроля над WWW трафиком, как в предыдущем методе.
3. Конечно возможно ограничить скорость путём использования модуля –m limit для iptables – но считаю это неприемлемым.
В общем я решил остановиться на методе ограничения трафика с помощью пакета iproute2.
Как уже упоминал, я использую сервер: OS Ubuntu 10.04, ядро 2.6.32-30. В сервере 3 интерфейса: eth0 – внутренняя сеть, eth1 — провайдер 1, eth2 – провайдер 2.
Задача: ограничить скорость входящего и исходящего трафика пользователей с приоритезацией трафика по классам, исходя из некоторых условий. Локальный трафик не ограничивать.
Представим ситуацию, когда пользователь установил соединение с youtube.com и смотрит какой-нибудь ролик в HD-качестве. Основная часть трафика направляется от сервера, в данном случае youtube.com к пользователю. Учитывая, что весь трафик проходит через наш шлюз, мы можем повлиять на скорость передачи этого трафика путем установки шейпера трафика на интерфейсе внутренней сети.
Похожая ситуация происходит, когда пользователь загружает фотоотчет о проведенном отпуске, состоящий из 300 фотографий в разрешении 5000х3500 пикселей на какой-нибудь сервис хранения фотографий в интернете.
Естественно, что при отсутствии системы ограничения трафика этот пользователь займёт весь канал и остальным пользователям не будет предоставлена нормальная скорость работы с Интернет. Но мы не может ограничить скорость отправки данных пользователем на внешнем интерфейсе сервера, т.к. для доступа пользователей в Интернет используется NAT, а, учитывая, что шейпинг трафика выполняется после преобразования адресов, то на внешнем интерфейсе сервера уже не будет пакетов с внутренними адресами сети.
Для решения проблемы ограничения исходящего от клиента трафика я использовал устройство IFB, на которое перенаправлял весь исходящий от клиента трафик.
В теории управления трафиком мы можем ограничивать только исходящий трафик. Следовательно, трафик, который направляется к пользователю внутренней сети, будет исходящим относительно внутреннего интерфейса eth0, а трафик, направляющийся от пользователя внутренней сети – исходящим относительно внешнего интерфейса eth1.
Исходя из вышеизложенного, я ограничивал входящий к пользователю трафик на интерфейсе внутренней сети — eth0, а исходящий от пользователя трафик – на виртуальном интерфейсе ifb0.
Для того чтобы во время занятия пользователем всей полосы пропускания, ограниченной ему на шлюзе, для скачивания какого-нибудь большого объема данных и при этом мог нормально пользоваться ssh и чтобы у него работал ping – я использовал приоритезацию трафика.
Я расставил следующие приоритеты трафика:
- icmp
- udp,ssh
- tcp sport 80
- остальной неклассифицированный трафик
Чем ниже параметр – тем выше приоритет трафика.
Дисциплины, классы, фильтры
Как уже было мной отмечено, входящий к пользователям трафик будет ограничиваться на интерфейсе eth0, а исходящий от пользователей – на виртуальном интерфейсе ifb0.
Для инициализации интерфейса ifb0 нужно сначала загрузить модуль управления интерфейсом:
/sbin/modprobe ifb
После успешной загрузки модуля нужно включить интерфейс:
/sbin/ip link set dev ifb0 up
Затем, после того, как интерфейс будет поднят, нужно организовать переадресацию всего исходящего трафика от пользователей на этот интерфейс:
/sbin/tc qdisc add dev eth0 ingress
/sbin/tc filter add dev eth0 parent ffff: protocol ip u32 match u32 0 0 action mirred egress redirect dev ifb0
Теперь можно смело начинать строить классы и фильтры для входящего к пользователям трафика на интерфейсе eth0, а исходящего – на интерфейсе ifb0.
Для ограничения трафика используется следующий принцип:
- На интерфейсе создается, так называемый корневой обработчик очереди
- К этой дисциплине прикрепляется класс, который одержит информацию о максимальной пропускной способности данных, которые в этот класс попадут
- Добавляется фильтр, который, с помощью определенных параметров, относит каждый пакет к тому или иному классу
Классы могут быть вложенными. То есть, если класс 1: описывает максимальную пропускную способность в 1Мбит, то класс 1:1, который является его подклассом, не может превысить ограничения по скорости его родителя.
Ограничиваем входящий к пользователям трафик
Все манипуляции с трафиком будем проводить на интерфейсе eth0.
Для начала создадим корневой обработчик очереди на интерфейсе:
/sbin/tc qdisc add dev eth0 root handle 1: htb default 900
Тем самым мы привязали корневой обработчик очереди к интерфейсу eth0, присвоили ему номер 1: и указали на использование планировщика HTB с отправкой всего неклассифицированного трафика в класс с номером 900.
Затем создадим дочерний класс 1:1 с шириной канала, равной скорости интерфейса:
/sbin/tc class add dev eth0 parent 1: classid 1:1 htb rate 100Mbit burst 15k
Все последующие классы будут подклассами только что созданного нами класса. Это дает нам более точную приоритезацию и обработку скорости потока данных.
Создадим класс для локального трафика, адресом назначения или исходным адресом которого будет являться внутренний адрес сервера. Это нужно для удобства пользования ресурсами сервера, такими как SSH, SMB, FTP, WWW и так далее. Скорость, описанная классом – 50Mbit, но в случае, если скорость потока родительского класса не меньше 100Mbit, то разрешаем использовать 80Mbit, в качестве максимальной скорости передачи данных.
/sbin/tc class add dev eth0 parent 1:1 classid 1:10 htb rate 50Mbit ceil 80Mbit burst 15k
Далее создаем класс, скорость которого будет равно ширине полосы пропускания, которую нам предоставляет провайдер. В моем случае – это 15Mbit.
/sbin/tc class add dev eth0 parent 1:1 classid 1:100 htb rate 15Mbit burst 15k
Даже если провайдер предоставляет большую скорость, к примеру 18Mbit, я рекомендую снижать эту скорость для шейпера на 1-2 Mbit для более «мягкого» ограничения трафика.
Далее создадим класс, в который будут отправляться все пакеты данных, которые не попадут ни в один из созданных ранее классов.
/sbin/tc class add dev eth0 parent 1:1 classid 1:900 htb rate 56Kbit ceil 128Kbit
Для каждого пользователя я создавал отдельный подкласс, с выделенной полосой пропускания, а затем создавал подклассы этого класса для приоритезации трафика:
/sbin/tc class add dev eth0 parent 1:100 classid 1:101 htb rate 4Mbit ceil 6Mbit
Данной командой мы указали на создание класса с номером 1:101, который является подклассом класса с номером 1:100 и указали пропускную способность класса в 4Mbit, а в случае свободной полосу пропускания у родительского класса, разрешить максимальное прохождение данных по классу на скорости 6Mbit.
Далее создаем подклассы для приоритезации трафика:
# PRIO 1 -> icmp traffic — самый низкий приоритет
/sbin/tc class add dev eth0 parent 1:101 classid 1:102 htb rate 33kbit ceil 6Mbit prio 1
# PRIO 2 -> udp, ssh
/sbin/tc class add dev eth0 parent 1:101 classid 1:103 htb rate 33kbit ceil 6Mbit prio 2
# PRIO 3 -> tcp sport 80 – WWW трафик из мира
/sbin/tc class add dev eth0 parent 1:101 classid 1:104 htb rate 33kbit ceil 6Mbit prio 3
# PRIO 4 -> unclassified traffic – трафик, который не попал под условия, указанные в предыдущих классах
/sbin/tc class add dev eth0 parent 1:101 classid 1:105 htb rate 33kbit ceil 6Mbit prio 4
После создания классов пришло время создания фильтров, которые будут классифицировать трафик по определенным критериям.
Есть несколько способов классифицировать трафик.
Самые удобные из них – это u32 классификаторы, позволяющие классифицировать пакеты исходя из адреса назначения или отправителя, используемого протокола, номера порта и так далее, и классификаторы на основе меток iptables. Для использования последних необходимо сначала маркировать пакеты при помощи iptables в цепочке PREROUTING, на основе каких-либо условий, а затем при помощи tc направлять пакеты с соответствующей меткой в нужные классы.
Я предпочел использовать u32 классификатор.
Присваиваем icmp-трафику самый низкий приоритет и отправляем его в класс 1:102
/sbin/tc filter add dev eth0 protocol ip parent 1:0 prio 1 u32 match ip dst 192.168.10.78 \
match ip protocol 1 0xff flowid 1:102
UDP и SSH трафик отправляем в класс 1:103
/sbin/tc filter add dev eth0 protocol ip parent 1:0 prio 2 u32 match ip dst 192.168.10.78 \
match ip protocol 17 0xff flowid 1:103
/sbin/tc filter add dev eth0 protocol ip parent 1:0 prio 2 u32 match ip dst 192.168.10.78 \
match ip protocol 6 0xff match ip sport 22 0xffff flowid 1:103
WWW-трафик, пришедший с tcp-порта 80 отправляем в класс 1:104
/sbin/tc filter add dev eth0 protocol ip parent 1:0 prio 3 u32 match ip dst 192.168.10.78 \
match ip protocol 6 0xff match ip sport 80 0xffff flowid 1:104
Трафик, не соответствующий ни одному из условий отправляем в класс 1:105
/sbin/tc filter add dev eth0 protocol ip parent 1:0 prio 4 u32 match ip dst 192.168.10.78 flowid 1:105
Приоритезация работает по такому принципу, что каждому классу выделяется по минимальной полосе пропускания с возможностью заимствования у родительского класса максимальной полосы пропускания, в зависимости от приоритета трафика, поэтому, если класс будет забит WWW-трафиком с tcp-порта 80, при прохождении icmp пакета с более низким приоритетом, чем у WWW-трафика, он будет пропущен вне очереди, учитывая его приоритет.
Ограничиваем исходящий трафик
Для ограничения исходящего от пользователей трафика выполняются такие же действия как и для входящего, только в ход идет виртуальный интерфейс ifb0. Также нужно изменить назначение следования трафика: вместо dst 192.168.10.78 – нужно указать src 192.168.10.78 соответственно.
Автоматизация и принцип работы скриптов
Для начала, для автоматизации процесса ограничения скорости нужно создать файл, в котором будет перечислены адреса пользователей, для которых нужно устанавливать ограничения с указанием этих ограничений.
Файл представляет из себя поля, разделенный знаком табуляции либо пробелом со следующими значениями:
CLIENT – Имя пользователя. Нужно для удобства предоставления данных
IP – адрес пользователя в сети
DOWN – скорость потока данных к пользователю
CEIL – максимальная скорость входящего трафика к пользователю при доступности данной полосы у родительского класса
UP — скорость потока данных от пользователя
CEIL – то же, что и у CEIL для входящего трафика к пользователю
PROVIDER – какой из провайдеров используется для обслуживания запросов пользователя (при наличии нескольких)
ID – номер класса для пользователя. Подробнее о номерах классов ниже.
Также я использую несколько bash-скриптов.
root@steel:/etc/rc.d/shape# cat ./rc.shape
#!/bin/bash
. /etc/init.d/functions
/sbin/modprobe ifb
/sbin/ip link set dev ifb0 up
TC=»/sbin/tc»
DEV_P1_DOWN=»eth0″
DEV_P1_UP=»ifb0″
stop() <
$TC qdisc del dev $DEV_P1_DOWN root
$TC qdisc del dev $DEV_P1_UP root
$TC qdisc del dev $DEV_P1_DOWN ingress
>
start() <
# Удаляем все обработчики на интерфейсе
$TC qdisc del dev $DEV_P1_DOWN root
$TC qdisc del dev $DEV_P1_UP root
$TC qdisc del dev $DEV_P1_DOWN ingress
## Перенаправляем весь исходящий от пользователей трафик на виртуальный интерфейс ifb0
$TC qdisc add dev $DEV_P1_DOWN ingress
$TC filter add dev $DEV_P1_DOWN parent ffff: protocol ip u32 match u32 0 0 action mirred egress redirect dev $DEV_P1_UP
# Подгружаем скрипты с описанием классов входящего и исходящего трафика
# Весь трафик, который следует на шлюз или от него ограничиваем в 50Мбит с максимумом в 80Мбит.
$TC filter add dev $DEV_P1_UP protocol ip parent 1:0 prio 1 u32 match ip dst 10.0.0.1 flowid 1:10
$TC filter add dev $DEV_P1_DOWN protocol ip parent 1:0 prio 1 u32 match ip src 10.0.0.1 flowid 1:10
# Подгружаем скрипт с описанием фильтров
. /etc/rc.d/shape/rc.shape.filters
>
Далее код, который подгружается:
root@steel:/etc/rc.d/shape# cat ./rc.shape.down.classes
#!/bin/bash
## DOWNLOAD CLASSES
##########################################################
# Создаем корневой обработчик очереди
$TC qdisc add dev $DEV_P1_DOWN root handle 1: htb default 900
# Описание классов для входящего к пользователям трафика
$TC class add dev $DEV_P1_DOWN parent 1: classid 1:1 htb rate 100Mbit burst 15k
# Локльный трафик (SERVER -> CLIENTS)
$TC class add dev $DEV_P1_DOWN parent 1:1 classid 1:10 htb rate 50Mbit ceil 80Mbit burst 15k
# Трафик от провайдера (SERVER -> CLIENTS)
$TC class add dev $DEV_P1_DOWN parent 1:1 classid 1:100 htb rate 15Mbit burst 15k
# Неклассифицированный трафик будет отправлен в этот класс (SERVER -> CLIENTS)
$TC class add dev $DEV_P1_DOWN parent 1:1 classid 1:900 htb rate 128Kbit ceil 128Kbit
root@steel:/etc/rc.d/shape# cat ./rc.shape.up.classes
#!/bin/bash
## UPLOAD CLASSES
#############################################################
# Создаем корневой обработчик очереди
$TC qdisc add dev ifb0 root handle 1: htb default 900
# Описание классов для исходящего от пользователей трафика
$TC class add dev ifb0 parent 1: classid 1:1 htb rate 100Mbit burst 15k
# Локальный трафик (CLIENTS -> SERVER)
$TC class add dev $DEV_P1_UP parent 1:1 classid 1:10 htb rate 50Mbit ceil 80Mbit burst 15k
# Трафик к провайдеру (CLIENTS -> SERVER)
$TC class add dev $DEV_P1_UP parent 1:1 classid 1:100 htb rate 5Mbit burst 15k
# Неклассифицированный трафик будет отправлен в этот класс (CLIENTS -> SERVER)
$TC class add dev $DEV_P1_UP parent 1:1 classid 1:900 htb rate 128Kbit ceil 128Kbit
root@steel:/etc/rc.d/shape# cat ./rc.shape.filters
#!/bin/bash
# читаем построчно файл “users”
while read LINE
do
set — $LINE
if [[ $1 =
# создаем отдельный подкласс для пользователя
$TC class add dev $DEV_P1_DOWN parent 1:100 classid 1:$<8>1 htb rate $CLIENT_DOWN_RATE ceil $CLIENT_DOWN_CEIL
# PRIO 1 -> icmp traffic
$TC class add dev $DEV_P1_DOWN parent 1:$<8>1 classid 1:$<8>2 htb rate 33kbit ceil $CLIENT_DOWN_CEIL prio 1
# PRIO 2 -> udp, ssh
$TC class add dev $DEV_P1_DOWN parent 1:$<8>1 classid 1:$<8>3 htb rate 33kbit ceil $CLIENT_DOWN_CEIL prio 2
# PRIO 3 -> tcp sport 80
$TC class add dev $DEV_P1_DOWN parent 1:$<8>1 classid 1:$<8>4 htb rate 33kbit ceil $CLIENT_DOWN_CEIL prio 3
# PRIO 4 -> unclassified traffic
$TC class add dev $DEV_P1_DOWN parent 1:$<8>1 classid 1:$<8>5 htb rate 33kbit ceil $CLIENT_DOWN_CEIL prio 4
# фильтруем icmp-пакеты в ранее созданный нами класс для icmp-трафика с приоритетот 1
$TC filter add dev $DEV_P1_DOWN protocol ip parent 1:0 prio 1 u32 match ip dst $CLIENT_IP \
match ip protocol 1 0xff flowid 1:$<8>2
# фильтрация udp
$TC filter add dev $DEV_P1_DOWN protocol ip parent 1:0 prio 2 u32 match ip dst $CLIENT_IP \
match ip protocol 17 0xff flowid 1:$<8>3
# ssh
$TC filter add dev $DEV_P1_DOWN protocol ip parent 1:0 prio 2 u32 match ip dst $CLIENT_IP \
match ip protocol 6 0xff match ip sport 22 0xffff flowid 1:$<8>3
# WWW, sport 80
$TC filter add dev $DEV_P1_DOWN protocol ip parent 1:0 prio 3 u32 match ip dst $CLIENT_IP \
match ip protocol 6 0xff match ip sport 80 0xffff flowid 1:$<8>4
# самый высокий приоритет – трафику, не попавшему под предыдущие фильтры
$TC filter add dev $DEV_P1_DOWN protocol ip parent 1:0 prio 4 u32 match ip dst $CLIENT_IP flowid 1:$<8>5
### ТАКИЕ ЖЕ ПРАВИЛА И ДЛЯ ИСХОДЯЩЕГО ТРАФИКА
$TC class add dev $DEV_P1_UP parent 1:100 classid 1:$<8>1 htb rate $CLIENT_UP_RATE ceil $CLIENT_UP_CEIL
# PRIO 1 -> icmp traffic
$TC class add dev $DEV_P1_UP parent 1:$<8>1 classid 1:$<8>2 htb rate 1kbit ceil $CLIENT_UP_CEIL prio 1
# PRIO 2 -> udp, ssh
$TC class add dev $DEV_P1_UP parent 1:$<8>1 classid 1:$<8>3 htb rate 1kbit ceil $CLIENT_UP_CEIL prio 2
# PRIO 3 -> unclassified traffic
$TC class add dev $DEV_P1_UP parent 1:$<8>1 classid 1:$<8>4 htb rate 1kbit ceil $CLIENT_UP_CEIL prio 3
$TC filter add dev $DEV_P1_UP protocol ip parent 1:0 prio 1 u32 match ip src $CLIENT_IP \
match ip protocol 1 0xff flowid 1:$<8>2
$TC filter add dev $DEV_P1_UP protocol ip parent 1:0 prio 2 u32 match ip src $CLIENT_IP \
match ip protocol 17 0xff flowid 1:$<8>3
$TC filter add dev $DEV_P1_UP protocol ip parent 1:0 prio 2 u32 match ip src $CLIENT_IP \
match ip protocol 6 0xff match ip dport 22 0xffff flowid 1:$<8>3
$TC filter add dev $DEV_P1_UP protocol ip parent 1:0 prio 3 u32 match ip src $CLIENT_IP flowid 1:$<8>4
Данные скрипты нужно положить в один каталог, Выполнить:
chmod +x ./rc.shape
Я описал один из методов ограничения трафика. Утилита tc – очень мощная вещь в вопросах об ограничениях трафика. Рекомендую ознакомиться с документом: LARTC-HOWTO для более глубокого изучения данного вопроса.
Источник