Оконные windows приложения это

Введение в создание оконных приложений

Программирование в Windows основывается на использовании функций API (Application Program Interface, т.е. интерфейс программного приложения).

Программа для Windows в значительной степени состоит из таких вызовов. Все взаимодействие с внешними устройствами и ресурсами операционной системы происходит посредством таких функций.

Программный интерфейс приложений

Windows API (Application Programming Interfaces) — общее наименование целого набора базовых функций интерфейсов программирования приложений операционных систем семейств Microsoft Windows.

Windows API в настоящее время поддерживает свыше тысячи вызовов функций, которые можно использовать в приложениях. Каждая функция Windows API имеет развернутое имя, написанное буквами как верхнего, так и нижнего регистров.

Все основные функции Windows объявляются в заголовочных файлах. Главный заголовочный файл называется WINDOWS.H, и в этом файле содержится множество ссылок на другие заголовочные файлы.

Основное отличие функций API от библиотечных функций С: код библиотечных функций связывается с кодом программы пользователя, а код функций API остается вне программы пользователя в динамически подключаемых библиотеках (DLL – Dynamic Link Library), что позволяет создавать более компактный и эффективный код приложений.

При запуске программы Windows она взаимодействует с операционной системой посредством процесса «динамического связывания». Большая часть динамических библиотек DLL расположена в каталоге WINDOWS\SYSTEM.

При компоновке программы для Windows, чтобы сделать ее исполняемой, необходимо связывать ее с «библиотеками импорта», поставляемыми в составе среды программирования (IDE – Integrated Development Environment), которой может являться, в частности, Microsoft Visual Studio. Библиотеки импорта содержат имена всех функций Windows из динамически подключаемых библиотек и ссылки на них. Компоновщик использует эту информацию для создания в исполняемом EXE-файле таблицы, которую Windows использует при загрузке программы для настройки адресов функций API.

Графический интерфейс пользователя

Графический интерфейс пользователя (Graphical User Interface, GUI) еще называют «визуальный интерфейс» или «графическая оконная среда».

GUI делает возможным использование графики на растровом экране. Графика дает лучшее восприятие элементов управления на экране, визуально богатую среду для передачи информации. В GUI экран становится устройством ввода и показывает различные графические объекты в виде картинок и конструкций для ввода информации, таких как кнопки или полосы прокрутки. Используя клавиатуру и манипулятор (мышь, тачпад), пользователь может непосредственно оперировать объектами на экране. Графические объекты можно перетаскивать, кнопки можно нажимать, полосы прокрутки можно прокручивать. Взаимодействие между пользователем и программой становится более тесным.

Пользователям не надо тратить слишком много времени на то, чтобы научиться пользоваться компьютером и составлять новые программы. Система Windows способствует этому, поскольку все программы для Windows выглядят и воспринимаются одинаково.

Любая программа для Windows имеет окно — прямоугольную область на экране, в котором приложение отображает информацию и получает реакцию от пользователя. Окно идентифицируется заголовком. Большинство функций программы запускается посредством меню. Слишком большой для экрана объем информации может быть просмотрен с помощью полос прокрутки. Некоторые пункты меню вызывают появление окон диалога, в которые пользователь вводит дополнительную информацию.

Читайте также:  Список поддерживаемых устройств для windows 10

Программирование Windows-приложений тесно связано с понятиями объектно-ориентированного программирования. Главным объектом в операционной системе Windows является окно. Окно может содержать элементы управления: кнопки, списки, окна редактирования и др. Эти элементы, по сути, также являются окнами, но обладающими особыми свойствами.

Активное окно – окно, получающее реакцию от пользователя в данный момент.

Основными элементами окна являются

  • 1 — строка заголовка title bar
  • 2 — строка меню menu bar
  • 3 — системное меню system menu
  • 4 — кнопка сворачивания окна minimize box
  • 5 — кнопка разворачивания окна maximize box
  • 6 — рамка изменения размеров sizing border
  • 7 — клиентская область client area
  • 8 — горизонтальная и вертикальная полосы прокрутки scroll bars

Многозадачность

Многозадачность ( multitasking ) — свойство операционной системы обеспечивать возможность параллельной (или псевдопараллельной) обработки нескольких процессов.

Операционная система Windows является многозадачной. Если программа DOS после своего запуска должна быть постоянно активной, и если ей что-то требуется (к примеру, получить очередную порцию данных с устройства ввода-вывода), то она сама должна выполнять соответствующие запросы к операционной системе, то в Windows все наоборот. Программа пассивна, после запуска она ждет, когда ей уделит внимание операционная система. Операционная система делает это посылкой специально оформленных групп данных, называемых сообщениями . Сообщения могут быть разного типа, они функционируют в системе достаточно хаотично, и приложение не знает, какого типа сообщение придет следующим.

Логика построения Windows-приложения должна обеспечивать корректную и предсказуемую работу при поступлении сообщений любого типа. Одновременно несколько программ могут выполняться и иметь вывод на экран. Каждая программа занимает на экране прямоугольное окно. Пользователь может перемещать окна по всему экрану, менять их размер, переключаться между разными программами и передавать данные от одной программы к другой.

Операционная система не сможет реализовать многозадачность без управления памятью. Так как одни программы запускаются, а другие завершаются, память фрагментируется. Операционная система Windows имеет средства управления фрагментами памяти.

Процессы и потоки

Процессом ( process ) называется экземпляр программы, загруженной в память. Экземпляр программы может создавать потоки ( thread ), которые представляют собой последовательность инструкций на выполнение.

Выполняются не процессы, а именно потоки. Любой процесс имеет хотя бы один поток. Этот поток называется главным (основным) потоком приложения .

Потоки на самом деле выполняются не одновременно, а по очереди. Распределение процессорного времени происходит между потоками, но переключение между ними происходит так часто, что кажется будто они выполняются параллельно.

Все потоки ранжируются по приоритетам. Приоритет потока обозначается числом от 0 до 31, и определяется исходя из приоритета процесса, породившего поток, и относительного приоритета самого потока. Таким образом, достигается наибольшая гибкость, и каждый поток в идеале получает столько времени, сколько ему необходимо.

Дескрипторы

Дескриптор (описатель) объекта — служебная структура данных, представляющая собой беззнаковое целое число и служащая для идентификации различных объектов. Дескриптор представляет собой указатель на некоторую системную структуру или индекс в некоторой системной таблице.

Примеры дескрипторов, описанных в заголовочном файле windows.h

Контекст устройства

GDI – графический интерфейс устройства. Функции системной библиотеки GDI32.dll используются для вывода графики на экран.

Дескриптор контекста устройства — это паспорт конкретного окна для функций GDI. Контекст устройства фактически является структурой данных, которая внутренне поддерживается GDI. Он связан с конкретным устройством вывода информации (принтер, дисплей). Что касается дисплея, то в данном случае контекст устройства обычно связан с конкретным окном на экране.

Читайте также:  При установке windows только курсор

Оконные windows приложения это

Наверное, вы уже поняли, что полноэкранным приложениям в этой книге уделяется особое внимание. Все программы на CD-ROM работают в полноэкранном режиме, и в этой главе до настоящего момента все внимание было сосредоточено исключительно на полноэкранных приложениях.

Дело в том, что книга посвящена быстродействующим графическим Windows-приложениям, а оконные приложения не обеспечивают оптимального быстродействия. Для полноты картины мы рассмотрим оконные приложения, но не так подробно, как полноэкранные. Впрочем, если вы захотите поддерживать оконный режим в своих приложениях, не все потеряно. Многие описанные приемы, реализованные в полноэкранных приложениях, в равной степени относятся и к оконным.

В начале этой главы мы воспользовались DirectDraw AppWizard и создали приложение Bounce. При этом мы указали, что создаваемая программа должна быть полноэкранной. Чтобы получить рассматриваемый ниже код, следует снова запустить AppWizard и выбрать оконное приложение.

Структура приложения

По своей структуре оконная версия приложения Bounce почти не отличается от полноэкранной. Как и прежде, классы DirectDrawWin и DirectDrawApp организуют поддержку DirectDraw и используются в качестве базовых для классов, относящихся к конкретным приложениям.

Инициализация

В полноэкранном варианте класса DirectDrawWin функция OnCreate() инициализирует DirectDraw за несколько этапов. Оконный вариант выглядит проще, потому что ему не приходится перечислять драйверы DirectDraw или видеорежимы. Оконная версия функции OnCreate() выглядит так:

Сначала указатель на интерфейс DirectDraw ( ddraw1 ) инициализируется функцией DirectDrawCreate() . Указатель ddraw1 , как и в полноэкранной версии, используется только для получения указателя на интерфейс DirectDraw2 , после чего освобождается.

Затем функция OnCreate() вызывает функцию SetCooperativeLevel() . В полноэкранном приложении уровень кооперации определялся тремя флагами: DDSCL_EXCLUSIVE , DDSCL_FULLSCREEN и DDSCL_ALLOWMODEX . В данном случае используется только флаг DDSCL_NORMAL .

Функция DetectDisplayMode() инициализирует некоторые переменные класса DirectDrawWin . Она выглядит так:

Функция DetectDisplayMode() с помощью функции GetDisplayMode() интерфейса DirectDraw получает информацию о текущем видеорежиме Windows. Говоря точнее, разрешение экрана и глубина пикселей текущего видеорежима сохраняются в переменных displayrect и displaydepth .

Далее OnCreate() вызывает функцию CreateFlippingSurfaces() . Хотя оконное приложение не может выполнять настоящего переключения страниц (как можно было бы решить, исходя из имени функции), имя было сохранено, потому что создаваемые в ней поверхности эмулируют переключение страниц. Код функции приведен в листинге 3.4.

Листинг 3.4. Функция CreateFlippingSurfaces() в оконном приложении

Сначала мы создаем первичную поверхность. В полноэкранном варианте код выглядит по-другому, потому что здесь создается обычная, несоставная первичная поверхность. В структуре DDSURFACEDESC мы описываем первичную поверхность, используя только флаг DDSCAPS_PRIMARYSURFACE . Затем описанная поверхность создается функцией CreateSurface() интерфейса DirectDraw .

Далее функция CreateClipper() интерфейса DirectDraw создает объект отсечения. CreateClipper() получает три аргумента, однако первый и последний из них чаще всего равны нулю. Второй аргумент представляет собой адрес указателя на интерфейс DirectDrawClipper . В нашем случае используется переменная класса DirectDrawWin с именем clipper .

Объект отсечения нужен для ограничения вывода в программе. Поскольку наше приложение работает в окне, которое находится на рабочем столе вместе с другими окнами, при обновлении изображения необходимо учитывать присутствие этих окон. Чтобы объект отсечения автоматически выполнял свою работу, его необходимо присоединить к окну функцией SetHWnd() интерфейса DirectDrawClipper . Функция SetHWnd() получает два аргумента — двойное слово ( DWORD ), которое зарезервировано для будущего использования и пока должно быть равно нулю, и логический номер окна приложения.

Читайте также:  Клиент whatsapp для linux

Далее объект отсечения присоединяется к первичной поверхности приложения функцией SetClipper() интерфейса DirectDrawSurface . После такого присоединения можно осуществлять блиттинг на первичную поверхность с помощью функции Blt() интерфейса DirectDrawSurface . Использовать функцию BltFast() нельзя, потому что она не поддерживает отсечения.

Последнее, что происходит в функции CreateFlippingSurface() , — создание поверхности вторичного буфера. В идеальном варианте нам удастся найти свободную видеопамять в объеме, достаточном для создания внеэкранной поверхности, которая по ширине и высоте совпадает с первичной поверхностью. Я называю такой вариант идеальным из-за преимущества по скорости, характерного для блит-операций в пределах видеопамяти. Кроме того, поскольку вторичный буфер по размерам совпадает с первичной поверхностью, он подойдет для окна любого размера.

Функция CreateFlippingSurfaces() пытается создать «идеальный» вторичный буфер, для чего используются флаг DDSCAPS_VIDEOMEMORY и функция CreateSurface() . Если вызов заканчивается успешно, флаг videobacksurf получает значение TRUE , а функция завершает работу. В противном случае вторичный буфер не создается, а флагу videobacksurf присваивается значение FALSE .

В таком варианте вторичный буфер создается приложением в системной памяти позднее, в обработчике OnSize() . Функция OnSize() вызывается при изменении размеров окна приложения. Создавая вторичный буфер по размерам клиентской области окна, мы экономим память. Функция OnSize() выглядит так:

Инициализация приложения завершается вызовом функций StorePixelFormatData() и CreateCustomSurfaces() , происходящим в обработчике OnCreate() . Обе функции ведут себя точно так же, как и в полноэкранном приложении.

Графический вывод

Как и в полноэкранном варианте, для обновления экрана класс DirectDrawWin вызывает функцию DrawScene() . Ее реализация для оконных приложений отличается от полноэкранного варианта по двум причинам. Во-первых, поскольку в оконном приложении не выполняется переключение страниц, содержимое вторичного буфера приходится копировать на первичную поверхность. Во-вторых, местонахождение выводимых данных на первичной поверхности должно определяться текущим положением и размерами окна. Помните — первичная поверхность в данном случае изображает весь экран, а не только клиентскую область окна. Оконный вариант DrawScene() выглядит так:

Функция DrawScene() выполняет две блит-операции. Первая копирует содержимое поверхности surf1 на внеэкранную поверхность, которая используется в качестве вторичного буфера. Обратите внимание на применение функции BltSurface() , рассмотренной нами выше. Автоматическое отсечение, выполняемое BltSurface() , позволяет произвольно выбирать позицию на поверхности surf1 .

Вторая блит-операция копирует содержимое вторичного буфера на первичную поверхность. На этот раз используется функция Blt() , поскольку к первичной поверхности присоединен объект отсечения. Структуры srect и drect типа RECT определяют области источника и приемника, участвующие в блиттинге. Заметьте, что при вычислении области приемника используются переменные offsetx и offsety , в которых хранятся координаты клиентской области окна. Если убрать эти смещения из структуры drect , программа всегда будет выводить изображение в левом верхнем углу экрана независимо от расположения окна.

Оцените статью