Opengl �������� �� ��������� ������ linux

The Industry’s Foundation for High Performance Graphics

from games to virtual reality, mobile phones to supercomputers

OpenGL Headline News

The Vulkan website has a new home and look!

It has been a while in the making but we are very excited to launch the new Vulkan website to the community. Don’t worry, Vulkan is still maintained and owned by The Khronos Group; we just felt that it had outgrown its old website now that it has been five years since the Vulkan 1.0 launch.

The original Vulkan website was designed for the launch of a cutting edge new API that would, initially, have limited official materials and community content. The old website performed that role admirably, but Vulkan has come a long way and we now have a large and increasing amount of tools, libraries, educational material, and news to showcase that a single page website cannot handle. The new website allows us to gather all these currently disparate internal and community resources in a single, easily navigable place.

Our primary goal with the new vulkan.org site was to place key resources prominently to allow developers to quickly and easily find what they need. With this in mind, each page has buttons in the banner leading straight to the most essential and popular resources. If you need the Vulkan Specification, SDK or Guide you can just jump straight there, no digging needed.

The new site has a whole page dedicated to Vulkan tools and support, giving developers access to SDKs, profilers, debuggers, libraries, language bindings, game engines and frameworks all easy to navigate to through a series of quick buttons. This is a huge improvement and it let’s developers discover new tools or quickly find their go to favorites.

Vulkan is enjoying a boom in adoption by world class developers and we want to make sure we are showcasing this exciting content to our visitors. As such you’ll notice much more prominent use of imagery across the site that will be updated as time goes on and new content is available. There is also now a dedicated “Made with Vulkan” showcase which is a living list of Vulkan content and reveals just how powerful and versatile the API is. If you have a Vulkan project that you would like to let us know about, please use the linked form on the Made with Vulkan page above the showcase.

We hope this website becomes a new focal point for the Vulkan community and improves the Vulkan development experience for both new and experienced developers.

NVIDIA provides OpenGL-accelerated Remote Desktop for GeForce

In these days of social distancing, game developers and content creators all over the world are working from home and asking for help using Windows Remote Desktop streaming with the OpenGL tools they use. NVIDIA has created a special tool for GeForce GPUs to accelerate Windows Remote Desktop streaming with GeForce drivers R440 or later. Download and run the executable (nvidiaopenglrdp.exe) from the DesignWorks website as Administrator on the remote Windows PC where your OpenGL application will run. A dialog will confirm that OpenGL acceleration is enabled for Remote Desktop and if a reboot is required.

Читайте также:  Bayhubtech integrated sd controller sda compliant host для windows 10 x64 что это

Mesa 20.0 Now Defaults To The New Intel Gallium3D Driver For Faster OpenGL

After missing their original target of transitioning to Intel Gallium3D by default for Mesa 19.3 as the preferred OpenGL Linux driver on Intel graphics hardware, this milestone has now been reached for Mesa 20.0.

Khronos Group Releases Vulkan 1.2

The Khronos Group announces the release of the Vulkan 1.2 specification for GPU acceleration. This release integrates 23 proven extensions into the core Vulkan API, bringing significant developer-requested access to new hardware functionality, improved application performance, and enhanced API usability. Multiple GPU vendors have certified conformant implementations, and significant open source tooling is expected during January 2020. Vulkan continues to evolve by listening to developer needs, shipping new functionality as extensions, and then consolidating extensions that receive positive developer feedback into a unified core API specification. Khronos and the Vulkan community will support Vulkan 1.2 in a wide range of open source compilers, tools, and debuggers by the end of January 2020. Driver release updates will be posted on the Vulkan Public Release Tracker.

Find more information on the Vulkan 1.2 specification and associated tests and tools at:

  • Khronos’ Vulkan Resource Page
  • Sample code can be found in the Vulkan Unified Samples Repository
  • Khronos welcomes feedback on Vulkan 1.2 from the developer community through:
    • Khronos Developer Slack
    • GitHub
  • A tutorial on Vulkan Timeline Semaphore
  • Updates on HLSL support in Vulkan
  • Download Vulkan 1.2 Presentation
  • Vulkan 1.2 Apparel

NVIDIA announces Nsight Systems 2019.6 with OpenGL improvements

NVIDIA Nsight Systems 2019.6 is now available for download. This release expands graphics trace on Windows by adding support for Direct3D 11, WDDM CPU+GPU queues, and OpenGL. On Linux, new features include support for CUDA 10.2, simultaneous CLI sessions, DWARF unwind and capture by hotkey.

Источник

Символы Unicode: о чём должен знать каждый разработчик

Если вы пишете международное приложение, использующее несколько языков, то вам нужно кое-что знать о кодировке. Она отвечает за то, как текст отображается на экране. Я вкратце расскажу об истории кодировки и о её стандартизации, а затем мы поговорим о её использовании. Затронем немного и теорию информатики.

Введение в кодировку

Компьютеры понимают лишь двоичные числа — нули и единицы, это их язык. Больше ничего. Одно число называется байтом, каждый байт состоит из восьми битов. То есть восемь нулей и единиц составляют один байт. Внутри компьютеров всё сводится к двоичности — языки программирования, движений мыши, нажатия клавиш и все слова на экране. Но если статья, которую вы читаете, раньше была набором нулей и единиц, то как двоичные числа превратились в текст? Давайте разберёмся.

Краткая история кодировки

На заре своего развития интернет был исключительно англоязычным. Его авторам и пользователям не нужно было заботиться о символах других языков, и все нужды полностью покрывала кодировка American Standard Code for Information Interchange (ASCII).

ASCII — это таблица сопоставления бинарных обозначений знакам алфавита. Когда компьютер получает такую запись:

то с помощью ASCII он преобразует её во фразу «Hello world».

Один байт (восемь бит) был достаточно велик, чтобы вместить в себя любую англоязычную букву, как и управляющие символы, часть из которых использовалась телепринтерами, так что в те годы они были полезны (сегодня уже не особо). К управляющим символам относился, например 7 (0111 в двоичном представлении), который заставлял компьютер издавать сигнал; 8 (1000 в двоичном представлении) — выводил последний напечатанный символ; или 12 (1100 в двоичном представлении) — стирал весь написанный на видеотерминале текст.

В те времена компьютеры считали 8 бит за один байт (так было не всегда), так что проблем не возникало. Мы могли хранить все управляющие символы, все числа и англоязычные буквы, и даже ещё оставалось место, поскольку один байт может кодировать 255 символов, а для ASCII нужно только 127. То есть неиспользованными оставалось ещё 128 позиций в кодировке.

Читайте также:  Linux увеличить корневой раздел

Вот как выглядит таблица ASCII. Двоичными числами кодируются все строчные и прописные буквы от A до Z и числа от 0 до 9. Первые 32 позиции отведены для непечатаемых управляющих символов.

Проблемы с ASCII

Позиции со 128 по 255 были пустыми. Общественность задумалась, чем их заполнить. Но у всех были разные идеи. Американский национальный институт стандартов (American National Standards Institute, ANSI) формулирует стандарты для разных отраслей. Там утвердили позиции ASCII с 0 по 127. Их никто не оспаривал. Проблема была с остальными позициями.

Вот чем были заполнены позиции 128-255 в первых компьютерах IBM:

Какие-то загогулины, фоновые иконки, математические операторы и символы с диакретическим знаком вроде é. Но разработчики других компьютерных архитектур не поддержали инициативу. Всем хотелось внедрить свою собственную кодировку во второй половине ASCII.

Все эти различные концовки назвали кодовыми страницами.

Что такое кодовые страницы ASCII?

Здесь собрана коллекция из более чем 465 разных кодовых страниц! Существовали разные страницы даже в рамках какого-то одного языка, например, для греческого и китайского. Как можно было стандартизировать этот бардак? Или хотя бы заставить его работать между разными языками? Или между разными кодовыми страницами для одного языка? В языках, отличающихся от английского? У китайцев больше 100 000 иероглифов. ASCII даже не может всех их вместить, даже если бы решили отдать все пустые позиции под китайские символы.

Эта проблема даже получила название Mojibake (бнопня, кракозябры). Так говорят про искажённый текст, который получается при использовании некорректной кодировки. В переводе с японского mojibake означает «преобразование символов».

Пример бнопни (кракозябров).

Безумие какое-то.

Именно! Не было ни единого шанса надёжно преобразовывать данные. Интернет — это лишь монструозное соединение компьютеров по всему миру. Представьте, что все страны решили использовать собственные стандарты. Например, греческие компьютеры принимают только греческий язык, а английские отправляют только английский. Это как кричать в пустой пещере, тебя никто не услышит.

ASCII уже не удовлетворял жизненным требованиям. Для всемирного интернета нужно было создать что-то другое, либо пришлось бы иметь дело с сотнями кодовых страниц.

��� Если только ������ вы не хотели ��� бы ��� читать подобные параграфы. �֎֏0590֐��׀ׁׂ׃ׅׄ׆ׇ

Так появился Unicode

Unicode расшифровывают как Universal Coded Character Set (UCS), и у него есть официальное обозначение ISO/IEC 10646. Но обычно все используют название Unicode.

Этот стандарт помог решить проблемы, возникавшие из-за кодировки и кодовых страниц. Он содержит множество кодовых пунктов (кодовых точек), присвоенных символам из языков и культур со всего мира. То есть Unicode — это набор символов. С его помощью можно сопоставить некую абстракцию с буквой, на которую мы хотим ссылаться. И так сделано для каждого символа, даже египетских иероглифов.

Кто-то проделал огромную работу, сопоставляя каждый символ во всех языках с уникальными кодами. Вот как это выглядит:

Префикс U+ говорит о том, что это стандарт Unicode, а число — это результат преобразования двоичных чисел. Стандарт использует шестнадцатеричную нотацию, которая является упрощённым представлением двоичных чисел. Здесь вы можете ввести в поле что угодно и посмотреть, как это будет преобразовано в Unicode. А здесь можно полюбоваться на все 143 859 кодовых пунктов.

Уточню на всякий случай: речь идёт о большом словаре кодовых пунктов, присвоенных всевозможным символам. Это очень большой набор символов, не более того.

Осталось добавить последний ингредиент.

Unicode Transform Protocol (UTF)

UTF — протокол кодирования кодовых пунктов в Unicode. Он прописан в стандарте и позволяет кодировать любой кодовый пункт. Однако существуют разные типы UTF. Они различаются количеством байтов, используемых для кодировки одного пункта. В UTF-8 используется один байт на пункт, в UTF-16 — два байта, в UTF-32 — четыре байта.

Читайте также:  Команды для linux opensuse

Но если у нас есть три разные кодировки, то как узнать, какая из них применяется в конкретном файле? Для этого используют маркер последовательности байтов (Byte Order Mark, BOM), который ещё называют сигнатурой кодировки (Encoding Signature). BOM — это двухбайтный маркер в начале файл, который говорит о том, какая именно кодировка тут применена.

В интернете чаще всего используют UTF-8, она также прописана как предпочтительная в стандарте HTML5, так что уделю ей больше всего внимания.

Этот график построен в 2012-м, UTF-8 становилась доминирующей кодировкой. И всё ещё ею является.

Что такое UTF-8 и как она работает?

UTF-8 кодирует с помощью одного байта каждый кодовый пункт Unicode с 0 по 127 (как в ASCII). То есть если вы писали программу с использованием ASCII, а ваши пользователи применяют UTF-8, они не заметят ничего необычного. Всё будет работать как задумано. Обратите внимание, как это важно. Нам нужно было сохранить обратную совместимость с ASCII в ходе массового внедрения UTF-8. И эта кодировка ничего не ломает.

Как следует из названия, кодовый пункт состоит из 8 битов (один байт). В Unicode есть символы, которые занимают несколько байтов (вплоть до 6). Это называют переменной длиной. В разных языках удельное количество байтов разное. В английском — 1, европейские языки (с латинским алфавитом), иврит и арабский представлены с помощью двух байтов на кодовый пункт. Для китайского, японского, корейского и других азиатских языков используют по три байта.

Если нужно, чтобы символ занимал больше одного байта, то применяется битовая комбинация, обозначающая переход — он говорит о том, что символ продолжается в нескольких следующих байтах.

И теперь мы, как по волшебству, пришли к соглашению, как закодировать шумерскую клинопись (Хабр её не отображает), а также значки emoji!

Подытожив сказанное: сначала читаем BOM, чтобы определить версию кодировки, затем преобразуем файл в кодовые пункты Unicode, а потом выводим на экран символы из набора Unicode.

Напоследок про UTF

Коды являются ключами. Если я отправлю ошибочную кодировку, вы не сможете ничего прочесть. Не забывайте об этом при отправке и получении данных. В наших повседневных инструментах это часто абстрагировано, но нам, программистам, важно понимать, что происходит под капотом.

Как нам задавать кодировку? Поскольку HTML пишется на английском, и почти все кодировки прекрасно работают с английским, мы можем указать кодировку в начале раздела .

Важно сделать это в самом начале , поскольку парсинг HTML может начаться заново, если в данный момент используется неправильная кодировка. Также узнать версию кодировки можно из заголовка Content-Type HTTP-запроса/ответа.

Если HTML-документ не содержит упоминания кодировки, спецификация HTML5 предлагает такое интересное решение, как BOM-сниффинг. С его помощью мы по маркеру порядка байтов (BOM) можем определить используемую кодировку.

Это всё?

Unicode ещё не завершён. Как и в случае с любым стандартом, мы что-то добавляем, убираем, предлагаем новое. Никакие спецификации нельзя назвать «завершёнными». Обычно в год бывает 1-2 релиза, найти их описание можно здесь.

Если вы дочитали до конца, то вы молодцы. Предлагаю сделать домашнюю работу. Посмотрите, как могут ломаться сайты при использовании неправильной кодировки. Я воспользовался этим расширением для Google Chrome, поменял кодировку и попытался открывать разные страницы. Информация была совершенно нечитаемой. Попробуйте сами, как выглядит бнопня. Это поможет понять, насколько важна кодировка.

Заключение

При написании этой статьи я узнал о Майкле Эверсоне. С 1993 года он предложил больше 200 изменений в Unicode, добавил в стандарт тысячи символов. По состоянию на 2003 год он считался самым продуктивным участником. Он один очень сильно повлиял на облик Unicode. Майкл — один из тех, кто сделал интернет таким, каким мы его сегодня знаем. Очень впечатляет.

Надеюсь, мне удалось показать вам, для чего нужны кодировки, какие проблемы они решают, и что происходит при их сбоях.

Источник

Оцените статью