Операционный процессор windows что это

Операционное устройство процессора

В целом ОУ выполняет операции, определяемые командами, и формирует эффективные адреса.

УУ вырабатывает управляющие сигналы, поступающие во все блоки вычислительной машины. В составе УУ можно выделить следующие функциональные блоки:

1) регистр команд – запоминающий регистр, в котором хранится код команды: код операции и адреса операндов (расположен в интерфейсной части процессора);

2) дешифратор операций – логический блок, который в соответствии с поступающим из регистра команд кодом операции выбирает один из множества имеющихся у него выходов;

3) постоянное запоминающее устройство (ПЗУ) микропрограмм хранит управляющие импульсы для выполнения в блоках вычислительной машины процедур обработки информации; импульс по выбранному дешифратором операций проводу считывает из ПЗУ микропрограмм необходимую последовательность управляющих сигналов;

4) узел формирования адреса (располагается в ШИ) – устройство для вычисления полного адреса ячейки памяти (регистра) по реквизитам, поступающим из микропроцессорной памяти или регистра команд;

5) кодовые шины данных, адреса и инструкций – часть внутренней интерфейсной шины процессора.

Таким образом, УУ формирует управляющие сигналы для выполнения процессором своих функций, рассмотренных в предыдущем вопросе.

АЛУ предназначено для выполнения арифметических и логических операций преобразования информации. Функционально в простейшем варианте АЛУ состоит из следующих компонент:

1) сумматор выполняет процедуру сложения двоичных кодов, имеет разрядность двойного машинного слова (32 бита);

2) регистры – быстродействующие ячейки памяти различной длины: регистр 1 имеет разрядность 32 бита, регистр 2 — 16 бит; при сложении в регистр 1 помещается первое слагаемое, а потом результат, в регистр 2 – второе слагаемое;

3) схема управления принимает по кодовым шинам инструкций управляющие сигналы от УУ и преобразует в сигналы для управления работой регистров и сумматора.

АЛУ выполняет арифметические операции только над двоичными числами с фиксированной точкой. Для обработки чисел с плавающей точкой привлекается математический сопроцессор или специально составленные программы.

Более подробные сведения об устройстве и функционировании УУ и АЛУ можно найти в /2, 4, 5/.

Регистры ОУ – часть микропроцессорной памяти. Рассмотрим регистры на примере базового процессора Intel 8086, который содержит всего 14 двухбайтовых регистра. В современных процессорах их гораздо больше и большей разрядности. Однако в качестве базовой модели, в частности для языка Ассемблера, используется 14-регистровая память процессора.

В состав ОУ входят следующие регистры:

1) регистры общего назначения (РОН) или универсальные: AX — (AH, AL), BX — (BH, BL), CX — (CH, CL), DX — (DH, DL) могут использоваться для временного хранения любых данных, при этом можно работать с каждым регистром целиком, а можно отдельно, с каждой его половиной; но каждый из РОН может использоваться и как специальный при выполнении некоторых конкретных команд;

2) регистры смещений: SP, BP, SI, DI являются неделимыми и предназначены для хранения относительных адресов ячеек памяти внутри сегментов (смещений относительно начала сегментов);

2.1) SP (Stack Pointer) – смещение вершины стека;

2.2) BP (Base Pointer) – смещение начального адреса поля памяти, непосредственно отведённого под стек;

2.3) SI (Source Index), DI (Destination Index) предназначены для хранения адресов индекса источника и приёмника данных при операциях над строками и им подобных.

Слово состояния процессора (PSW – Processor State Word) или регистр флагов – имеет размер 2 байта и содержит одноразрядные признаки или флаги. Всего в регистре 9 флагов: 6 из них условные или статусные, отражают результаты операций, выполненных ОУ, 3 других – управляющие, определяют режим исполнения программы.

1) Статусные флаги.

1.1) CF (Carry Flag) – флаг переноса. Устанавливается в 1, если при выполнении арифметических и некоторых операций сдвига возникает «перенос» из старшего разряда.

1.2) PF (Parity Flag) – флаг чётности. Проверяет младшие 8 битов результатов над данными. Чётное число единиц приводит к установке этого флага в 1, нечётное – в 0.

1.3) AF (Auxiliary Carry Flag) – флаг логического переноса в двоично-десятичной арифметике. Устанавливается в 1, если арифметическая операция приводит к переносу или займу четвёртого справа бита однобайтового операнда. Используется при арифметических операциях над двоично-десятичными кодами и кодами ASCII.

1.4) ZF (Zero Flag) – флаг нуля. Устанавливается в 1, если результат операции равен 0, в противном случае ZF обнуляется.

1.5) SF (Sign Flag) – флаг знака. Устанавливается в 1, если результат арифметической операции является отрицательным, в 0, если результат положительный.

Читайте также:  Linux find newer than

1.6) OF (Overflow Flag) – флаг переполнения. Устанавливается в единицу при арифметическом переполнении, когда результат выходит за пределы разрядной сетки.

2) Управляющие флаги.

2.1) TF (Trap Flag) – флаг трассировки. Единичное состояние этого флага переводит процессор в режим пошагового выполнения программы.

2.2) IF (Interrupt Flag) – флаг прерываний. При нулевом состоянии этого флага прерывания запрещены, при единичном – разрешены (о механизме прерываний речь пойдёт в следующей лекции).

2.3) DF (Direction Flag) – флаг направления. Используется в строковых операциях для задания направления обработки данных; при единичном состояния строки обрабатываются «справа налево», при нулевом – «слева направо».

Расположение флагов в регистре PSW показано на рисунке 4.2. Свободные биты отведены для использования в будущем.

OF DF IF TF SF ZF AF PF CF

Рисунок 4.2 – Схема расположения флагов в регистре PSW

Подробно и просто о процессорах для персонального компьютера

М икропроцессор для персонального компьютера а, так же и для других устройств, будь то телефоны, планшеты, ноутбуки или другие интересные гаджеты, является основным центральным устройством, которое выполняет практически все вычисления и отвечает за обработку данных. Можно даже сказать так — центральный процессор это “мозг” любого современного компьютера или высокотехнологичного устройства. Так же он является одним из самых дорогостоящих элементов в составе современных компьютеров.

Содержание статьи по разделам:

Подробнее об истории, работе и технологических характеристиках вы узнаете из этой статьи.

1. История появления процессора

Первые компьютерные процессоры, основу которых составляло механическое реле, появились в пятидесятых годах прошлого века. Спустя какое-то время появились модели с электронными лампами, которые в итоге были заменены на транзисторы. Сами же компьютеры представляли собой довольно габаритные и дорогостоящие устройства.

Последующее развитие процессоров свелось к тому, что было принято решение входящие в них компоненты, представить в одной микросхеме. Позволило осуществить данную задумку появление интегральных полупроводниковых схем.

В 1969 г. компания Busicom заказала двенадцать микросхем у Intel , которые они планировали использовать в собственной разработке – в настольном калькуляторе. Уже в то время разработчиков Intel посещала идея заменить несколько микросхем одной. Идею одобрило руководство корпорации, поскольку подобная технология позволяла существенно сократить расходы на производстве микросхем, при этом у специалистов появилась возможность сделать процессор универсальным для использования его в других вычислительных устройствах.

В результате чего появился первый микропроцессор Intel 4004, который выполнял 60 тыс. операций в секунду.

2. Принцип действия процессора

Центральный процессор по праву считается сердцем любого компьютера. В его структуру входит небольших размеров кремниевый кристалл, основу которого составляет несколько миллионов транзисторов.

Подобного рода процессоры могут выполнить до нескольких миллионов задач в секунду.

Процесс выполнения всех команд включает: извлечение из памяти по указанному адресу двоичного кода и последующее его преобразование во внутренний понятный для процессора код, иными словами происходит дешифрование полученной команды. Последней стадией считается выполнение команды. Для одновременного выполнения двух и более команд процессор использует считывающие информацию процедуры из памяти.

Следовательно, выполнение описанных задач нуждается в большом количестве времени, что усложняет работу центрального процессора, поскольку ему приходится ждать поступления данных. Чтобы работа процессора выполнялась быстрей, современные машины используют механизм конвейеризации, суть которого состоит в том, что пока извлекается одна команда из памяти, вторая в это время уже дешифруется, тогда как третья – выполняется.

3. Параметры и характеристики процессора

Что такое процессор выяснили, теперь предлагаем рассмотреть основные характеристики процессора:

Количество ядер. Чем больше число входящих в состав процессора ядер, тем выше его производительность.

Разрядность процессора — означает, какое максимальное количество оперативной памяти можно установить на компьютер.

Технический процесс. Чем этот параметр меньше, тем лучше, поскольку иными словами – это занимаемая кристаллом площадь на процессоре, следовательно, чем размер кристаллов меньше, тем большее их количество уместится, что увеличит тактовую частоту.

Кэш процессора также является немаловажным параметром. Чем показатели его выше, тем больше данных можно сохранить в особой памяти, ускоряющей работу процессора.

Тактовая частота. Тактом условно называется одна операция. Единицей измерения тактовой частоты считается МГц и ГГц. Так, например один МГц означает, что процессору под силу выполнить один миллион команд в секунду.

Socket. Данный параметр позволяет стандартизировать все процессоры по подключаемым к материнской плате разъемам.

4. Разрядность процессора (32/64 бит)

Бит представляет собой краткую форму двоичного разряда, представленную 0 или 1, поскольку компьютер хранит и производит операции посредствам именно этих двоичных цифр. Следовательно, напрашивается вывод, что у 32-битных процессоров имеется возможность представить числа от нуля до двух в 32-й степени, тогда как 64-х битные процессоры могут представить числа от нуля до двух в 64-й степени. Путем нехитрых подсчетов можно прикинуть, что 64-битные процессоры обрабатывают больший диапазон чисел, нежели 32-разрядные процессоры.

Читайте также:  Перенос пользовательские настройки windows

Термин разрядность процессора включает в себя понятие ширины шины данных, являющейся кабелем, передающим информацию из памяти ПК в процессор. Шина данных в 64-битном процессоре способна передать больший объем информации, чем шина в 32-разрядном процессоре, потратив на это одинаковое количество времени.

5. Быстродействие процессора (частота и мегагерцы)

Термин тактовая частота компьютера подразумевает количество тактовых импульсов, которое вырабатывает тактовый генератор в секунду.

Тактовая частота как различных, так и одинаковых моделей процессоров может варьироваться в широком диапазоне значений. Процессор выполняет все программные команды за необходимое число тактов. К примеру, простейшая операция сложения может быть выполнена за два такта, тогда как делению может понадобиться 25 тактов. Из всего вышесказанного следует, что чем выше показатель тактовой частоты, тем быстрее компьютером выполняются возлагаемые на него задачи. Сегодняшние ПК снабжены процессорами, тактовая частота которых — от нескольких сотен МГц до нескольких ГГц.

Быстродействие работы ПК непосредственным образом связано с его тактовой частотой, которая позволяет определить количество выполняемых им команд в секунду.

6. Частота процессора и системной платы

Быстродействие является одним из наиболее важных показателей работы процессора. Самая меньшая единица измерения времени для процессора – такт или как его еще именуют – период тактовой частоты. На все выполняемые процессором операции тратится минимум один такт.

Сегодня практически каждый процессор работает на тактовой частоте, являющейся произведением множителя и тактовой частотой системной платы. Так, например, тактовая частота Celeron 600 в более чем 9 раз превышает тактовую частоту системной платы. Аналогичным примером является Pentium III 1000, тактовая частота которого в 8,5 раз выше тактовой частоты системной платы.

Довольно часто тактовая частота системной платы одновременно с множителем устанавливается посредствам перемычек или иных инструментов конфигурирования системной платы, к категории которых можно отнести соответствующие значения в установочной программе параметров BIOS.

Некоторые системы позволяют увеличить уже имеющуюся рабочую частоту процессора, данная процедура называется «разгоном». Установка большей частоты процессора позволяет увеличить и его показатели быстродействия.

7. Сравнение фирм-производителей Intel и AMD

Американская компания под названием Intel была основана в 1968 году, тогда как ее основной конкурент – компания AMD – появилась спустя год.

То, что AMD явила себя свету на год позже, нежели Intel, в существенной мере отразилось на их соперничестве. Первые процессоры от компании AMD представляли собой копии процессоров, выпущенных компанией Intel, однако этот факт не помешал AMD разработать первый 16-ядерный процессор . При этом в 2005 обычному пользователю был предложен первый 2-ядерный процессор , носящий название AMD Athlon 64 X2.

Двухъядерные процессоры Core 2 Duo, разработанные компанией Intel, на год позже появились на соответствующем рынке, при этом стоимость процессоров AMD и сегодня намного дешевле процессоров от Intel.

Какому процессору все же стоит отдать предпочтение? Если пользователю необходимо использование компьютера для работы со сложным профессиональным программным обеспечением, то в этом случае лучше приобрести ПК с процессором от Intel.

Процессоры AMD – отличный вариант для игровых ПК и в ситуациях, не требующих высокой производительности аппаратной начинки.

8. Кэш-память процессора

Кэш – не что иное, как память процессора, задачи которой схожи с задачами, возлагаемыми на оперативную память. Процессор использует кэш для хранения в нем данных. В данной разновидности памяти буферизируется наиболее часто используемая информация, за счет чего временные затраты на последующее обращение к ней в существенной мере сокращаются.

Оперативная память реализуемых сегодня компьютеров, составляет от 1 Гб, при этом кэш процессоров не превышает 8 Мб. Как видно из приведенных данных, разница в этих разновидностях памяти довольно существенная. Несмотря на это, даже указанного объема достаточно для обеспечения нормального быстродействия всей системы. Немалый интерес у пользователей сегодня вызывают процессоры с двухуровневой кэш-памятью: L1 и L2. Память первого уровня меньше памяти второго уровня и необходима она для хранения инструкций. При этом второй уровень за счет того, что он больше, используется для непосредственного хранения данных. У многих процессоров на данный момент кэш второго уровня общий.

9. Функции и технологии процессоров: MMX, SSE, 3DNow!, Hyper Threading

Современные процессоры снабжены характерными дополнительными функциями и технологиями, расширяющими их возможности:

3DNow!, ММХ, SSE, SSE2, SSE3 – технологии, оптимизирующие работу с объемными данными и мультимедийными файлами;

• В процессорах AMD с целью защиты от ряда вирусов предусмотрена технология NX-bit (No Execute), при этом в процессорах Intel имеется аналогичная технология XD (Execute Disable Bit);

Cool’n’Quiet (в AMD), ТМ1/ТМ2, С1Е, EIST (в Intel) снижается потребление электрической энергии;

• В технологии AMD64 или ЕМТ64 (для процессоров Intel) нуждаются 64-битные инструкции;

Читайте также:  Справки бк 2021 для линукс

• Одновременное выполнение нескольких потоков команд в некоторых процессорах Intel подразумевает наличие технологии НТ (Hyper-Threading Technology).

10. Многоядерность процессоров

Центр современных центральных микропроцессоров снабжен ядрами. Ядро представляет собой кристалл кремния, площадь которого составляет около одного квадратного сантиметра. Несмотря на небольшие размеры, микроскопические логические элементы позволили реализовать на его поверхности принципиальную схему процессора, так называемую архитектуру (chip architecture).

Многоядерность процессора заключается в наличии в центральном микропроцессоре двух и более вычислительных ядер на поверхности одного процессорного кристалла, которые также могут быть заключены в одном корпусе.

Перечень преимуществ многоядерного процессора:

• появляется возможность распределить работу приложений по нескольким ядрам;

• процессы, нуждающиеся в интенсивных вычислениях, работают существенно быстрее;

• увеличивается скорость отклика приложений;

• снижение потребления электрической энергии;

• более продуктивное использование ресурсоемких мультимедийных программ;

• более комфортная работа пользователей ПК.

11. Производство процессоров

Производство микропроцессоров включает минимум два важных этапа. На первом этапе производятся подложки, которым впоследствии придают проводящие свойства. На втором этапе произведенные подложки тестируются, после чего собирается и упаковывается процессор.

Сегодня такие ведущие производители процессоров, как AMD и Intel стараются наладить выпуск продукции, задействовав при этом максимально возможные сегменты рынка, максимально сократив возможный ассортимент кристаллов. Отличным тому подтверждением являются процессоры Intel Core 2 Duo. В линейку упомянутой продукции входят три процессора с разными кодовыми наименованиями: Merom, предназначенный для мобильных устройств, Conroe – для настольных версий, Woodcrest – для серверных версий. У всех трех процессоров одна технологическая основа, что дает возможность производителю принимать решение, будучи на последнем этапе производства. Так, например, если на рынке будут более востребованы мобильные процессоры, компания сфокусируется на выпуске модели Socket 479. Если возрастет потребность в настольных моделях, то компания Intel упакует кристаллы, необходимые для Socket 775. В случае роста спроса на серверные процессоры, все вышеуказанные действия будут применены для Socket 771.

12. Маркировка и кодовые названия процессоров

Разнообразная продукция, произведенная на заводах крупных предприятий, обозначается кодовыми наименованиями, что является довольно удобным решением, нежели использование длинных официальных обозначений при проведении служебных разговоров и переписки. Порой о внутрифирменных кодовых названиях узнают широкие слои пользователей, однако довольно редко они употребляются в повседневном обиходе.

Ситуация с кодовыми наименованиями процессоров обратно противоположная, поскольку в последнее время они стали употребляться в разговорах и в качестве маркировки процессоров входить в официальную документацию.

При этом запомнить необходимо лишь некоторые кодовые названия, к примеру, для успешной модернизации ПК, поскольку чаще всего помимо красивого звучания и рекламных амбиций, подобные наименования никакой полезной информации для потребителя не несут.

13. Гнезда (socket) для процессоров

Сокет процессора в переводе с английского языка означает «разъем» или «гнездо». Если применить этот термин к компьютеру, то гнездом называется место установки центрального процессора. Каждая модель процессора снабжена своим вариантом разъема, связанно это с тем, что технологии изготовления процессоров совершенствовались, а потому модернизировалась их архитектура, количество транзисторов, гнезда и т.д.

Сокет центрального процессора имеет вид щелевого или гнездового разъёма, предназначенного для того, чтобы упростить процесс установки центрального процессора. Использование разъёмов значительно упрощает замену процессора для последующего ремонта или модернизации ПК.

14. Охлаждение процессора

Вентилятор или, как его еще называют кулер, — устройство, задача которого сводится к тому, чтобы обеспечивать охлаждение процессора. Существую разные модели кулеров, однако чаще всего они устанавливаются поверх самого процессора.

Кулеры бывают активными и пассивными. К категории пассивных кулеров относятся обычные радиаторы, довольно дешевые, потребляющие минимум электричества и при этом практически бесшумные. Активный же кулер представляет собой радиатор с прикрепленным к нему вентилятором.

Наибольшей популярностью сегодня пользуются активные воздушные кулеры, состоящие из металлического радиатора с установленным на нем вентилятором.

Будучи механическим устройством, трущиеся детали кулера нуждаются в своевременном смазывании машинным маслом, при этом категорически запрещается для этих целей использовать масла растительного происхождения.

О необходимости смазать устройство можно узнать характерному и постепенно увеличивающемуся шуму от кулера.

15. Неисправности и ошибки в процессорах

В случае неисправности процессора, ПК может начать самостоятельно выключаться и перезагружаться, операционная система «зависать», а жёсткий диск попросту не отображаться. При этом все вышеописанное сопровождается сильным нагреванием процессора. Нередко, неисправный процессор становится причиной постоянных ошибок в работе операционной системы и сопутствующего программного обеспечения.

Ни при каких условиях нельзя неисправный процессор проверять на рабочей материнской плате, поскольку подобные действия вполне могут спровоцировать вывод из строя материнской платы.

Чаще всего процессоры подвергаются поломке по причине перегрева и некорректной сборки компьютера, что может стать причиной случайного загиба контактов процессора, а вследствие и возникновения короткого замыкания. Решить проблему в этом случае может лишь замена процессора.

Оцените статью