Перевод чисел калькулятор windows

Содержание
  1. Перевод чисел из одной системы счисления в любую другую онлайн
  2. Перевод чисел из одной системы счисления в другую
  3. Кратко об основных системах счисления
  4. Перевод в десятичную систему счисления
  5. Перевод из десятичной системы счисления в другие
  6. Перевод из двоичной системы в восьмеричную
  7. Перевод из двоичной системы в шестнадцатеричную
  8. Перевод из восьмеричной системы в двоичную
  9. Перевод из шестнадцатеричной системы в двоичную
  10. Перевод из восьмеричной системы в шестнадцатеричную и наоборот
  11. Системы счисления для Windows
  12. Отзывы о программе Системы счисления
  13. Перевод чисел в различные системы счисления с решением
  14. Системы счисления
  15. Перевод чисел из одной системы счисления в другую
  16. Перевод чисел из любой системы счисления в десятичную систему счисления
  17. Перевод чисел из десятичной системы счисления в другую систему счисления
  18. Перевод целой части числа из десятичной системы счисления в другую систему счисления
  19. Перевод дробной части числа из десятичной системы счисления в другую систему счисления

Перевод чисел из одной системы счисления в любую другую онлайн

  • Калькулятор
  • Инструкция
  • Теория
  • История
  • Сообщить о проблеме

Ура. Вам стало интересно как получилось данное число

Вы ввели число: в системе счисления и хотите перевести его в .
Для этого переведем его сначала в десятичную вот так :

  1. Введите число которое надо перевести.
  2. Укажите его систему счисления.
  3. Укажите в какую систему счисления переводить.
  4. Нажмите кнопку «Перевести».

Калькулятор перевода чисел имеет одно поле для ввода. В это поле необходимо ввести число которое Вы хотите перевести.

После этого Вам обязательно нужно указать в какой системе счисления Вы его ввели. Для этого под полем ввода есть графа «Его система счисления».

Если Вы не нашли своей системы, то выберите графу «другая» и появится поле ввода . В это поле необходимо вписать основание системы одним числом без пробелов.
Далее необходимо выбрать в какую систему хотите перевести данное число. Если Вы опять не нашли нужной системы то введите ее в графе «другая».

После нажмите кнопку «ПЕРЕВЕСТИ» и результат появится в соответствующем поле. Если Вы хотите получить подробный ход решения, то нажмите на соответствующую ссылку.

Научиться переводить число из одной системы счисления в другую очень просто.

Любое число может быть легко переведено в десятичную систему по следующему алгоритму:

Каждая цифра числа должна быть умножена на основание системы счисления этого числа возведенное в степень равное позиции текущей цифры в числе справа налево, причём счёт начинается с 0.

Перевод чисел из одной системы счисления в другую

Данный конвертер переводит числа между наиболее популярными системами счисления: десятичной, двоичной, восьмеричной, шестнадцатеричной.

Система счисления — это способ представления числа. Одно и то же число может быть представлено в различных видах. Например, число 200 в привычной нам десятичной системе может иметь вид 11001000 в двоичной системе, 310 в восьмеричной и C8 в шестнадцатеричной.

Существуют и другие системы счисления, но мы не стали включать их в конвертер из-за низкой популярности.

Для указания системы счисления при записи числа используется нижний индекс, который ставится после числа:
20010 = 110010002 = 3108 = C816

Кратко об основных системах счисления

Десятичная система счисления. Используется в повседневной жизни и является самой распространенной. Все числа, которые нас окружают представлены в этой системе. В каждом разряде такого числа может использоваться только одна цифра от 0 до 9.

Двоичная система счисления. Используется в вычислительной технике. Для записи числа используются цифры 0 и 1.

Читайте также:  Управление дисками не видит ssd диск windows 10

Восьмеричная система счисления. Также иногда применяется в цифровой технике. Для записи числа используются цифры от 0 до 7.

Шестнадцатеричная система счисления. Наиболее распространена в современных компьютерах. При помощи неё, например, указывают цвет. #FF0000 — красный цвет. Для записи числа используются цифры от 0 до 9 и буквы A,B,C,D,E,F, которые соответственно обозначают числа 10,11,12,13,14,15.

Перевод в десятичную систему счисления

Преобразовать число из любой системы счисления в десятичную можно следующим образом: каждый разряд числа необходимо умножить на X n , где X — основание исходного числа, n — номер разряда. Затем суммировать полученные значения.

Перевод из десятичной системы счисления в другие

Делим десятичное число на основание системы, в которую хотим перевести и записываем остатки от деления. Запишем полученные остатки в обратном порядке и получим искомое число.

Переведем число 37510 в восьмеричную систему:

Перевод из двоичной системы в восьмеричную

Для перевода в восьмеричную систему нужно разбить двоичное число на группы по 3 цифры справа налево. В последней (самой левой) группе вместо недостающих цифр поставить слева нули. Для каждой полученной группы произвести умножение каждого разряда на 2 n , где n — номер разряда.

Так же как и в первом способе разбиваем число на группы. Но вместо преобразований в скобках просто заменим полученные группы (триады) на соответствующие цифры восьмеричной системы, используя таблицу триад:

Триада 000 001 010 011 100 101 110 111
Цифра 0 1 2 3 4 5 6 7

Перевод из двоичной системы в шестнадцатеричную

Разбиваем число на группы по 4 цифры справа налево. Последнюю (левую) группу дополним при необходимости ведущими нулями. Внутри каждой полученной группы произведем умножение каждой цифры на 2 n , где n — номер разряда, и сложим результаты.

Также как и в первом способе разбиваем число на группы по 4 цифры. Заменим полученные группы (тетрады) на соответствующие цифры шестнадцатеричной системы, используя таблицу тетрад:

Тетрада 0000 0001 0010 0011 0100 0101 0110 0111 1000 1001 1010 1011 1100 1101 1110 1111
Цифра 0 1 2 3 4 5 6 7 8 9 A B C D E F

Перевод из восьмеричной системы в двоичную

Каждый разряд восьмеричного числа будем делить на 2 и записывать остатки в обратном порядке, формируя группы по 3 разряда двоичного числа. Если в группе получилось меньше 3 разрядов, тогда дополняем нулями. Записываем все группы по порядку, отбрасываем ведущие нули, если имеются, и получаем двоичное число.

Используем таблицу триад:

Цифра 0 1 2 3 4 5 6 7
Триада 000 001 010 011 100 101 110 111

Каждую цифру исходного восьмеричного числа заменяется на соответствующие триады. Ведущие нули самой первой триады отбрасываются.

Перевод из шестнадцатеричной системы в двоичную

Аналогично переводу из восьмеричной в двоичную, только группы по 4 разряда.

Используем таблицу тетрад:

Цифра 0 1 2 3 4 5 6 7 8 9 A B C D E F
Тетрада 0000 0001 0010 0011 0100 0101 0110 0111 1000 1001 1010 1011 1100 1101 1110 1111

Каждую цифру исходного числа заменяется на соответствующие тетрады. Ведущие нули самой первой тетрады отбрасываются.

Перевод из восьмеричной системы в шестнадцатеричную и наоборот

Такую конвертацию можно осуществить через промежуточное десятичное или двоичное число. То есть исходное число сначала перевести в десятичное (или двоичное), и затем полученный результат перевести в конечную систему счисления.

Системы счисления для Windows

Оценка:
  • 1
  • 2
  • 3
  • 4
  • 5

4.23 /5 голосов — 28

Лицензия:Бесплатная
Версия:2.11 | Сообщить о новой версии
Обновлено:13.01.2010
ОС:Windows Vista, XP
Интерфейс:Русский
Разработчик:
Категории:Калькуляторы — Basic, VB, VB DotNet
Загрузок (сегодня/всего):0 / 16 894 | Статистика
Размер:91 Кб
СКАЧАТЬ

Программа Системы счисления предназначена для перевода целых и дробных чисел из одной позиционной системы счисления с неотрицательными целочисленными основаниями в другую.
Диапазон значений систем счисления — от 2 до 36 включительно. Цифры выше 9 обозначаются латинскими буквами от A до Z. Регистр вводимого числа не имеет значения. В итоговом числе цифры-буквы отображаются в верхнем регистре.
Есть возможность указания точности выводимого дробного числа (для бесконечных периодических дробей). Возможна проверка в виде обратного перевода — кнопка «обратно». При переводе отрицательных чисел знак сохраняется. Дробная часть отделяется от целой как точкой так и запятой. Программа не допускает ввода более одной десятичной точки/запятой. К итоговому числу всегда добавляется точка.
Программа не допускает ввода недопустимых символов а также недопустимых цифр, которых не может быть в данной системе счисления. Например цифры 3 не может быть в числе которое задано в двоичной системе счисления.
При переводе целой части чисел, которая больше 26 знаков (в десятичном эквиваленте) и при переводе дробной части чисел, которая больше 26 знаков (в десятичном эквиваленте) возможны погрешности.

Old Calculator for Windows 10 — привычный классический калькулятор из Windows 7 или 8.x для пользователей Windows 10.

NumLock Calculator — очень удобный калькулятор, который выскакивает при нажатии NumLock (или ScrollLock), а.

Калькулятор ЛовиОтвет — простой и достаточно легкий в использовании калькулятор с подробным решением примеров и уравнений.

ClockCalc — калькулятор времени. Складывает и вычитает минуты, секунды и часы адекватно переводя их друг в друга согласно системе учета времени.

Date Calculator — калькулятор дней. Программа позволяет произвести подсчет количества дней.

Небольшая бесплатная портативная утилита, с помощью которой можно быстро и легко узнать.

Отзывы о программе Системы счисления

Shel про Системы счисления 2.11 [08-08-2014]

Очень удобная и толковая прога.Автору спасибо.
2 | 3 | Ответить

Автор про Системы счисления 2.11 [05-01-2012]

iнфолiякрат — программа «дуракоустойчива» и не даёт ввести 3 при двоичной (например) системе.
2 | 2 | Ответить

iнфолiякрат про Системы счисления 2.11 [23-12-2011]

Например цифры 3 не может быть в числе которое задано в двоичной системе счисления, в единичной или троичной, цифра 3 м.б. в системе с основанием более 3, например в четверичной. 100-ричной.
2 | 2 | Ответить

Максим про Системы счисления 2.11 [16-12-2011]

Вынь руки из жопы и уснови .NET Framework
3 | 2 | Ответить

Александр про Системы счисления 2.11 [29-09-2011]

Отлично! Программа работает!
2 | 2 | Ответить

Перевод чисел в различные системы счисления с решением

Калькулятор позволяет переводить целые и дробные числа из одной системы счисления в другую. Основание системы счисления не может быть меньше 2 и больше 36 (10 цифр и 26 латинских букв всё-таки). Длина чисел не должна превышать 30 символов. Для ввода дробных чисел используйте символ . или , . Чтобы перевести число из одной системы в другую, введите исходное число в первое поле, основание исходной системы счисления во второе и основание системы счисления, в которую нужно перевести число, в третье поле, после чего нажмите кнопку «Получить запись».

Исходное число записано в -ой системе счисления.

Хочу получить запись числа в -ой системе счисления.

Системы счисления

Системы счисления делятся на два типа: позиционные и не позиционные. Мы пользуемся арабской системой, она является позиционной, а есть ещё римская − она как раз не позиционная. В позиционных системах положение цифры в числе однозначно определяет значение этого числа. Это легко понять, рассмотрев на примере какого-нибудь числа.

Пример 1. Возьмём число 5921 в десятичной системе счисления. Пронумеруем число справа налево начиная с нуля:

Число: 5 9 2 1
Позиция: 3 2 1 0

Число 5921 можно записать в следующем виде: 5921 = 5000+900+20+1 = 5·10 3 +9·10 2 +2·10 1 +1·10 0 . Число 10 является характеристикой, определяющей систему счисления. В качестве степеней взяты значения позиции данного числа.

Пример 2. Рассмотрим вещественное десятичное число 1234.567. Пронумеруем его начиная с нулевой позиции числа от десятичной точки влево и вправо:

Число: 1 2 3 4 5 6 7
Позиция: 3 2 1 0 -1 -2 -3

Число 1234.567 можно записать в следующем виде: 1234.567 = 1000+200+30+4+0.5+0.06+0.007 = 1·10 3 +2·10 2 +3·10 1 +4·10 0 +5·10 -1 +6·10 -2 +7·10 -3 .

Перевод чисел из одной системы счисления в другую

Наиболее простым способом перевода числа с одной системы счисления в другую, является перевод числа сначала в десятичную систему счисления, а затем, полученного результата в требуемую систему счисления.

Перевод чисел из любой системы счисления в десятичную систему счисления

Для перевода числа из любой системы счисления в десятичную достаточно пронумеровать его разряды, начиная с нулевого (разряд слева от десятичной точки) аналогично примерам 1 или 2. Найдём сумму произведений цифр числа на основание системы счисления в степени позиции этой цифры:

1. Перевести число 1001101.11012 в десятичную систему счисления.
Решение: 1001101.11012 = 1·2 6 +0·2 5 +0·2 4 +1·2 3 +1·2 2 +0·2 1 +1·2 0 +1·2 -1 +1·2 -2 +0·2 -3 +1·2 -4 = 64+8++4+1+0.5+0.25+0.0625 = 77.812510
Ответ: 1001101.11012 = 77.812510

2. Перевести число E8F.2D16 в десятичную систему счисления.
Решение: E8F.2D16 = 14·16 2 +8·16 1 +15·16 0 +2·16 -1 +13·16 -2 = 3584+128+15+0.125+0.05078125 = 3727.1757812510
Ответ: E8F.2D16 = 3727.1757812510

Перевод чисел из десятичной системы счисления в другую систему счисления

Для перевода чисел из десятичной системы счисления в другую систему счисления целую и дробную части числа нужно переводить отдельно.

Перевод целой части числа из десятичной системы счисления в другую систему счисления

Целая часть переводится из десятичной системы счисления в другую систему счисления с помощью последовательного деления целой части числа на основание системы счисления до получения целого остатка, меньшего основания системы счисления. Результатом перевода будет являться запись из остатков, начиная с последнего.

3. Перевести число 27310 в восьмиричную систему счисления.
Решение: 273 / 8 = 34 и остаток 1, 34 / 8 = 4 и остаток 2, 4 меньше 8, поэтому вычисления завершены. Запись из остатков будет иметь следующий вид: 421
Проверка: 4·8 2 +2·8 1 +1·8 0 = 256+16+1 = 273 = 273 , результат совпал. Значит перевод выполнен правильно.
Ответ: 27310 = 4218

Рассмотрим перевод правильных десятичных дробей в различные системы счисления.

Перевод дробной части числа из десятичной системы счисления в другую систему счисления

Напомним, правильной десятичной дробью называется вещественное число с нулевой целой частью. Чтобы перевести такое число в систему счисления с основанием N нужно последовательно умножать число на N до тех пор, пока дробная часть не обнулится или же не будет получено требуемое количество разрядов. Если при умножении получается число с целой частью, отличное от нуля, то целая часть дальше не учитывается, так как последовательно заносится в результат.

4. Перевести число 0.12510 в двоичную систему счисления.
Решение: 0.125·2 = 0.25 (0 — целая часть, которая станет первой цифрой результата), 0.25·2 = 0.5 (0 — вторая цифра результата), 0.5·2 = 1.0 (1 — третья цифра результата, а так как дробная часть равна нулю, то перевод завершён).
Ответ: 0.12510 = 0.0012

Читайте также:  Windows fixed size что это
Оцените статью