Python build windows executable

Python on Windows FAQВ¶

How do I run a Python program under Windows?В¶

This is not necessarily a straightforward question. If you are already familiar with running programs from the Windows command line then everything will seem obvious; otherwise, you might need a little more guidance.

Unless you use some sort of integrated development environment, you will end up typing Windows commands into what is variously referred to as a “DOS window” or “Command prompt window”. Usually you can create such a window from your search bar by searching for cmd . You should be able to recognize when you have started such a window because you will see a Windows “command prompt”, which usually looks like this:

The letter may be different, and there might be other things after it, so you might just as easily see something like:

depending on how your computer has been set up and what else you have recently done with it. Once you have started such a window, you are well on the way to running Python programs.

You need to realize that your Python scripts have to be processed by another program called the Python interpreter. The interpreter reads your script, compiles it into bytecodes, and then executes the bytecodes to run your program. So, how do you arrange for the interpreter to handle your Python?

First, you need to make sure that your command window recognises the word “py” as an instruction to start the interpreter. If you have opened a command window, you should try entering the command py and hitting return:

You should then see something like:

You have started the interpreter in “interactive mode”. That means you can enter Python statements or expressions interactively and have them executed or evaluated while you wait. This is one of Python’s strongest features. Check it by entering a few expressions of your choice and seeing the results:

Many people use the interactive mode as a convenient yet highly programmable calculator. When you want to end your interactive Python session, call the exit() function or hold the Ctrl key down while you enter a Z , then hit the “ Enter ” key to get back to your Windows command prompt.

You may also find that you have a Start-menu entry such as Start ‣ Programs ‣ Python 3.x ‣ Python (command line) that results in you seeing the >>> prompt in a new window. If so, the window will disappear after you call the exit() function or enter the Ctrl-Z character; Windows is running a single “python” command in the window, and closes it when you terminate the interpreter.

Now that we know the py command is recognized, you can give your Python script to it. You’ll have to give either an absolute or a relative path to the Python script. Let’s say your Python script is located in your desktop and is named hello.py , and your command prompt is nicely opened in your home directory so you’re seeing something similar to:

So now you’ll ask the py command to give your script to Python by typing py followed by your script path:

How do I make Python scripts executable?В¶

On Windows, the standard Python installer already associates the .py extension with a file type (Python.File) and gives that file type an open command that runs the interpreter ( D:\Program Files\Python\python.exe «%1» %* ). This is enough to make scripts executable from the command prompt as ‘foo.py’. If you’d rather be able to execute the script by simple typing ‘foo’ with no extension you need to add .py to the PATHEXT environment variable.

Читайте также:  Какие драйвера нужны для windows 10 ноутбук

Why does Python sometimes take so long to start?В¶

Usually Python starts very quickly on Windows, but occasionally there are bug reports that Python suddenly begins to take a long time to start up. This is made even more puzzling because Python will work fine on other Windows systems which appear to be configured identically.

The problem may be caused by a misconfiguration of virus checking software on the problem machine. Some virus scanners have been known to introduce startup overhead of two orders of magnitude when the scanner is configured to monitor all reads from the filesystem. Try checking the configuration of virus scanning software on your systems to ensure that they are indeed configured identically. McAfee, when configured to scan all file system read activity, is a particular offender.

How do I make an executable from a Python script?В¶

See cx_Freeze for a distutils extension that allows you to create console and GUI executables from Python code. py2exe, the most popular extension for building Python 2.x-based executables, does not yet support Python 3 but a version that does is in development.

Is a *.pyd file the same as a DLL?В¶

Yes, .pyd files are dll’s, but there are a few differences. If you have a DLL named foo.pyd , then it must have a function PyInit_foo() . You can then write Python “import foo”, and Python will search for foo.pyd (as well as foo.py, foo.pyc) and if it finds it, will attempt to call PyInit_foo() to initialize it. You do not link your .exe with foo.lib, as that would cause Windows to require the DLL to be present.

Note that the search path for foo.pyd is PYTHONPATH, not the same as the path that Windows uses to search for foo.dll. Also, foo.pyd need not be present to run your program, whereas if you linked your program with a dll, the dll is required. Of course, foo.pyd is required if you want to say import foo . In a DLL, linkage is declared in the source code with __declspec(dllexport) . In a .pyd, linkage is defined in a list of available functions.

How can I embed Python into a Windows application?В¶

Embedding the Python interpreter in a Windows app can be summarized as follows:

Do _not_ build Python into your .exe file directly. On Windows, Python must be a DLL to handle importing modules that are themselves DLL’s. (This is the first key undocumented fact.) Instead, link to python NN .dll ; it is typically installed in C:\Windows\System . NN is the Python version, a number such as “33” for Python 3.3.

You can link to Python in two different ways. Load-time linking means linking against python NN .lib , while run-time linking means linking against python NN .dll . (General note: python NN .lib is the so-called “import lib” corresponding to python NN .dll . It merely defines symbols for the linker.)

Run-time linking greatly simplifies link options; everything happens at run time. Your code must load python NN .dll using the Windows LoadLibraryEx() routine. The code must also use access routines and data in python NN .dll (that is, Python’s C API’s) using pointers obtained by the Windows GetProcAddress() routine. Macros can make using these pointers transparent to any C code that calls routines in Python’s C API.

Borland note: convert python NN .lib to OMF format using Coff2Omf.exe first.

If you use SWIG, it is easy to create a Python “extension module” that will make the app’s data and methods available to Python. SWIG will handle just about all the grungy details for you. The result is C code that you link into your .exe file (!) You do _not_ have to create a DLL file, and this also simplifies linking.

SWIG will create an init function (a C function) whose name depends on the name of the extension module. For example, if the name of the module is leo, the init function will be called initleo(). If you use SWIG shadow classes, as you should, the init function will be called initleoc(). This initializes a mostly hidden helper class used by the shadow class.

Читайте также:  Универсальный формат векторных графических файлов для windows приложений

The reason you can link the C code in step 2 into your .exe file is that calling the initialization function is equivalent to importing the module into Python! (This is the second key undocumented fact.)

In short, you can use the following code to initialize the Python interpreter with your extension module.

There are two problems with Python’s C API which will become apparent if you use a compiler other than MSVC, the compiler used to build pythonNN.dll.

Problem 1: The so-called “Very High Level” functions that take FILE * arguments will not work in a multi-compiler environment because each compiler’s notion of a struct FILE will be different. From an implementation standpoint these are very _low_ level functions.

Problem 2: SWIG generates the following code when generating wrappers to void functions:

Alas, Py_None is a macro that expands to a reference to a complex data structure called _Py_NoneStruct inside pythonNN.dll. Again, this code will fail in a mult-compiler environment. Replace such code by:

It may be possible to use SWIG’s %typemap command to make the change automatically, though I have not been able to get this to work (I’m a complete SWIG newbie).

Using a Python shell script to put up a Python interpreter window from inside your Windows app is not a good idea; the resulting window will be independent of your app’s windowing system. Rather, you (or the wxPythonWindow class) should create a “native” interpreter window. It is easy to connect that window to the Python interpreter. You can redirect Python’s i/o to _any_ object that supports read and write, so all you need is a Python object (defined in your extension module) that contains read() and write() methods.

How do I keep editors from inserting tabs into my Python source?В¶

The FAQ does not recommend using tabs, and the Python style guide, PEP 8, recommends 4 spaces for distributed Python code; this is also the Emacs python-mode default.

Under any editor, mixing tabs and spaces is a bad idea. MSVC is no different in this respect, and is easily configured to use spaces: Take Tools ‣ Options ‣ Tabs , and for file type “Default” set “Tab size” and “Indent size” to 4, and select the “Insert spaces” radio button.

Python raises IndentationError or TabError if mixed tabs and spaces are causing problems in leading whitespace. You may also run the tabnanny module to check a directory tree in batch mode.

How do I check for a keypress without blocking?В¶

Use the msvcrt module. This is a standard Windows-specific extension module. It defines a function kbhit() which checks whether a keyboard hit is present, and getch() which gets one character without echoing it.

Create a single executable from a Python project

I want to create a single executable from my Python project. A user should be able to download and run it without needing Python installed. If I were just distributing a package, I could use pip, wheel, and PyPI to build and distribute it, but this requires that the user has Python and knows how to install packages. What can I use to build a self-contained executable from a Python project?

3 Answers 3

Here are some common ones. Unless explicitly noted, all projects listed below are being actively maintained as of my last edit (January 2020).

I’ve also included links to their respective websites, repos, and PyPi listings in case you want to check for yourself on how frequently they’ve been updated.

Also, unless otherwise noted, all programs listed below will produce an exe specifically for the operating system it’s running in. So for example, running Pyinstaller in Windows will produce a Windows exe, but running Pyinstaller in Linux will produce a Linux exe. If you want to produce an exe for multiple operating systems, you will have to look into using virtual machines or look into using something like Wine.

The following programs all work similarly — they bundle together Python and your program, effectively combining them to produce an executable.

Читайте также:  Windows 10 переключение языка вылазит окно

PyInstaller:

  • Links: Website || Repo || PyPi
  • Supports: Python 2.7 and Python 3.4 — 3.7 on Windows, Mac, and Linux.

cx_Freeze:

  • Links:Website || Repo || PyPi
  • Supports: Python 2.7 and 3.5 — 3.8 on Windows, Mac, and Linux.

py2app:

  • Links:Website || Repo || PyPi
  • Supports: Python 2.7 and 3.3 (?) — 3.7 (?) on Mac only.
  • Note: As of my last edit, I’ve been unable to conclusively determine the exact range of Python versions supported by pyapp. The latest release mentions supporting Python 3.7.

Note: prior versions of this post included write-ups for py2exe (repo) and bbfreeze (repo). Both projects have been removed from this list: they’ve seen little-to-no activity for several years and appear to be completely unmaintained. See edit history for the old writeups.

Of course, that’s not the only way of doing things:

pynsist:

  • Links:Website || Repo || PyPi
  • Supports: All Python versions? Note — will create Windows installers only.

Other notes: Pynsist seems to support bundling together any arbitrary Python version with your application. However, the tool itself requires Python 3.5+ to run.

Pynsist will create a Windows installer for your program which will directly install Python on the user’s computer instead of bundling it with your code and create shortcuts that link to your Python script. Although this program produces only Windows installers, it appears that you can still run Pynsist on Mac and Linux computers.

Nuitka:

  • Links:Website || Repo (Github mirror) || PyPi
  • Supports: Python 2.6 — 2.7 and Python 3.3 — 3.7 on Windows, Mac, and Linux.
  • Other notes: Nuitka will literally compile your Python code and produce an exe (as opposed to the other projects, which simply include Python) to try and speed up your code. As a side effect, you’ll also get a handy exe you can distribute. Note that you need to have a C++ compiler available on your system.

cython:

  • Links:Website || Repo || PyPi
  • Supports: Python 2.6 — 2.7 and Python 3.2 — 3.8 on Windows, Mac, and Linux.
  • Other notes: Cython is similar to Nuitka in that it is a Python compiler. However, instead of directly compiling your code, it’ll compile it to C. You can then take that C code and turn your code into an exe. You’ll need to have a C compiler available on your system.

My personal preference is to use PyInstaller since it was the easiest for me to get up and running, was designed to work nicely with various popular libraries such as numpy or pygame, and has great compatibility with various OSes and Python versions.

However, I’ve also successfully built various exes using cx_Freeze without too much difficulty, so you should also consider trying that program out.

I haven’t yet had a chance to to try pynist, Nuitka, or Cython extensively, but they seem like pretty interesting and innovative solutions. If you run into trouble using the first group of programs, it might be worthwhile to try one of these three. Since they work fundamentally differently then the Pyinstaller/cx_freeze-style programs, they might succeed in those odd edge cases where the first group fails.

In particular, I think pynist is a good way of sidestepping the entire issue of distributing your code altogether: Macs and Linux already have native support for Python, and just installing Python on Windows might genuinely be the cleanest solution. (The downside is now that you need to worry about targeting multiple versions of Python + installing libraries).

Nuitka and Cython (in my limited experience) seem to work fairly well. Again, I haven’t tested them extensively myself, and so my main observation is that they seem to take much longer to produce an exe then the «freeze» style programs do.

All this being said, converting your Python program into an executable isn’t necessarily the only way of distributing your code. To learn more about what other options are available, see the following links:

Оцените статью