Python windows error exception

Содержание
  1. 8. Errors and ExceptionsВ¶
  2. 8.1. Syntax ErrorsВ¶
  3. 8.2. ExceptionsВ¶
  4. 8.3. Handling ExceptionsВ¶
  5. 8.4. Raising ExceptionsВ¶
  6. 8.5. Exception ChainingВ¶
  7. 8.6. User-defined ExceptionsВ¶
  8. 8.7. Defining Clean-up ActionsВ¶
  9. 8.8. Predefined Clean-up ActionsВ¶
  10. Значения исключений и ошибок в Python
  11. Синтаксические ошибки (SyntaxError)
  12. Недостаточно памяти (OutofMemoryError)
  13. Ошибка рекурсии (RecursionError)
  14. Ошибка отступа (IndentationError)
  15. Исключения
  16. Ошибка типа (TypeError)
  17. Ошибка деления на ноль (ZeroDivisionError)
  18. Встроенные исключения
  19. Ошибка прерывания с клавиатуры (KeyboardInterrupt)
  20. Стандартные ошибки (StandardError)
  21. Арифметические ошибки (ArithmeticError)
  22. Деление на ноль (ZeroDivisionError)
  23. Переполнение (OverflowError)
  24. Ошибка утверждения (AssertionError)
  25. Ошибка атрибута (AttributeError)
  26. Ошибка импорта (ModuleNotFoundError)
  27. Ошибка поиска (LookupError)
  28. Ошибка ключа
  29. Ошибка индекса
  30. Ошибка памяти (MemoryError)
  31. Ошибка имени (NameError)
  32. Ошибка выполнения (Runtime Error)
  33. Ошибка типа (TypeError)
  34. Ошибка значения (ValueError)
  35. Пользовательские исключения в Python
  36. Недостатки обработки исключений в Python
  37. Выводы!
  38. Подписывайтесь на канал в Дзене

8. Errors and ExceptionsВ¶

Until now error messages haven’t been more than mentioned, but if you have tried out the examples you have probably seen some. There are (at least) two distinguishable kinds of errors: syntax errors and exceptions.

8.1. Syntax ErrorsВ¶

Syntax errors, also known as parsing errors, are perhaps the most common kind of complaint you get while you are still learning Python:

The parser repeats the offending line and displays a little ‘arrow’ pointing at the earliest point in the line where the error was detected. The error is caused by (or at least detected at) the token preceding the arrow: in the example, the error is detected at the function print() , since a colon ( ‘:’ ) is missing before it. File name and line number are printed so you know where to look in case the input came from a script.

8.2. ExceptionsВ¶

Even if a statement or expression is syntactically correct, it may cause an error when an attempt is made to execute it. Errors detected during execution are called exceptions and are not unconditionally fatal: you will soon learn how to handle them in Python programs. Most exceptions are not handled by programs, however, and result in error messages as shown here:

The last line of the error message indicates what happened. Exceptions come in different types, and the type is printed as part of the message: the types in the example are ZeroDivisionError , NameError and TypeError . The string printed as the exception type is the name of the built-in exception that occurred. This is true for all built-in exceptions, but need not be true for user-defined exceptions (although it is a useful convention). Standard exception names are built-in identifiers (not reserved keywords).

The rest of the line provides detail based on the type of exception and what caused it.

The preceding part of the error message shows the context where the exception occurred, in the form of a stack traceback. In general it contains a stack traceback listing source lines; however, it will not display lines read from standard input.

Built-in Exceptions lists the built-in exceptions and their meanings.

8.3. Handling ExceptionsВ¶

It is possible to write programs that handle selected exceptions. Look at the following example, which asks the user for input until a valid integer has been entered, but allows the user to interrupt the program (using Control-C or whatever the operating system supports); note that a user-generated interruption is signalled by raising the KeyboardInterrupt exception.

The try statement works as follows.

First, the try clause (the statement(s) between the try and except keywords) is executed.

If no exception occurs, the except clause is skipped and execution of the try statement is finished.

If an exception occurs during execution of the try clause, the rest of the clause is skipped. Then if its type matches the exception named after the except keyword, the except clause is executed, and then execution continues after the try statement.

If an exception occurs which does not match the exception named in the except clause, it is passed on to outer try statements; if no handler is found, it is an unhandled exception and execution stops with a message as shown above.

A try statement may have more than one except clause, to specify handlers for different exceptions. At most one handler will be executed. Handlers only handle exceptions that occur in the corresponding try clause, not in other handlers of the same try statement. An except clause may name multiple exceptions as a parenthesized tuple, for example:

A class in an except clause is compatible with an exception if it is the same class or a base class thereof (but not the other way around — an except clause listing a derived class is not compatible with a base class). For example, the following code will print B, C, D in that order:

Note that if the except clauses were reversed (with except B first), it would have printed B, B, B — the first matching except clause is triggered.

The last except clause may omit the exception name(s), to serve as a wildcard. Use this with extreme caution, since it is easy to mask a real programming error in this way! It can also be used to print an error message and then re-raise the exception (allowing a caller to handle the exception as well):

Читайте также:  Как включить дополнительные компоненты windows

The try … except statement has an optional else clause, which, when present, must follow all except clauses. It is useful for code that must be executed if the try clause does not raise an exception. For example:

The use of the else clause is better than adding additional code to the try clause because it avoids accidentally catching an exception that wasn’t raised by the code being protected by the try … except statement.

When an exception occurs, it may have an associated value, also known as the exception’s argument. The presence and type of the argument depend on the exception type.

The except clause may specify a variable after the exception name. The variable is bound to an exception instance with the arguments stored in instance.args . For convenience, the exception instance defines __str__() so the arguments can be printed directly without having to reference .args . One may also instantiate an exception first before raising it and add any attributes to it as desired.

If an exception has arguments, they are printed as the last part (‘detail’) of the message for unhandled exceptions.

Exception handlers don’t just handle exceptions if they occur immediately in the try clause, but also if they occur inside functions that are called (even indirectly) in the try clause. For example:

8.4. Raising ExceptionsВ¶

The raise statement allows the programmer to force a specified exception to occur. For example:

The sole argument to raise indicates the exception to be raised. This must be either an exception instance or an exception class (a class that derives from Exception ). If an exception class is passed, it will be implicitly instantiated by calling its constructor with no arguments:

If you need to determine whether an exception was raised but don’t intend to handle it, a simpler form of the raise statement allows you to re-raise the exception:

8.5. Exception ChainingВ¶

The raise statement allows an optional from which enables chaining exceptions. For example:

This can be useful when you are transforming exceptions. For example:

Exception chaining happens automatically when an exception is raised inside an except or finally section. Exception chaining can be disabled by using from None idiom:

For more information about chaining mechanics, see Built-in Exceptions .

8.6. User-defined ExceptionsВ¶

Programs may name their own exceptions by creating a new exception class (see Classes for more about Python classes). Exceptions should typically be derived from the Exception class, either directly or indirectly.

Exception classes can be defined which do anything any other class can do, but are usually kept simple, often only offering a number of attributes that allow information about the error to be extracted by handlers for the exception. When creating a module that can raise several distinct errors, a common practice is to create a base class for exceptions defined by that module, and subclass that to create specific exception classes for different error conditions:

Most exceptions are defined with names that end in “Error”, similar to the naming of the standard exceptions.

Many standard modules define their own exceptions to report errors that may occur in functions they define. More information on classes is presented in chapter Classes .

8.7. Defining Clean-up ActionsВ¶

The try statement has another optional clause which is intended to define clean-up actions that must be executed under all circumstances. For example:

If a finally clause is present, the finally clause will execute as the last task before the try statement completes. The finally clause runs whether or not the try statement produces an exception. The following points discuss more complex cases when an exception occurs:

If an exception occurs during execution of the try clause, the exception may be handled by an except clause. If the exception is not handled by an except clause, the exception is re-raised after the finally clause has been executed.

An exception could occur during execution of an except or else clause. Again, the exception is re-raised after the finally clause has been executed.

If the try statement reaches a break , continue or return statement, the finally clause will execute just prior to the break , continue or return statement’s execution.

If a finally clause includes a return statement, the returned value will be the one from the finally clause’s return statement, not the value from the try clause’s return statement.

A more complicated example:

As you can see, the finally clause is executed in any event. The TypeError raised by dividing two strings is not handled by the except clause and therefore re-raised after the finally clause has been executed.

In real world applications, the finally clause is useful for releasing external resources (such as files or network connections), regardless of whether the use of the resource was successful.

8.8. Predefined Clean-up ActionsВ¶

Some objects define standard clean-up actions to be undertaken when the object is no longer needed, regardless of whether or not the operation using the object succeeded or failed. Look at the following example, which tries to open a file and print its contents to the screen.

Читайте также:  Как включить bluetooth наушники windows 10

The problem with this code is that it leaves the file open for an indeterminate amount of time after this part of the code has finished executing. This is not an issue in simple scripts, but can be a problem for larger applications. The with statement allows objects like files to be used in a way that ensures they are always cleaned up promptly and correctly.

After the statement is executed, the file f is always closed, even if a problem was encountered while processing the lines. Objects which, like files, provide predefined clean-up actions will indicate this in their documentation.

Значения исключений и ошибок в Python

Обработка ошибок увеличивает отказоустойчивость кода, защищая его от потенциальных сбоев, которые могут привести к преждевременному завершению работы.

Прежде чем переходить к обсуждению того, почему обработка исключений так важна, и рассматривать встроенные в Python исключения, важно понять, что есть тонкая грань между понятиями ошибки и исключения.

Ошибку нельзя обработать, а исключения Python обрабатываются при выполнении программы. Ошибка может быть синтаксической, но существует и много видов исключений, которые возникают при выполнении и не останавливают программу сразу же. Ошибка может указывать на критические проблемы, которые приложение и не должно перехватывать, а исключения — состояния, которые стоит попробовать перехватить. Ошибки — вид непроверяемых и невозвратимых ошибок, таких как OutOfMemoryError , которые не стоит пытаться обработать.

Обработка исключений делает код более отказоустойчивым и помогает предотвращать потенциальные проблемы, которые могут привести к преждевременной остановке выполнения. Представьте код, который готов к развертыванию, но все равно прекращает работу из-за исключения. Клиент такой не примет, поэтому стоит заранее обработать конкретные исключения, чтобы избежать неразберихи.

Ошибки могут быть разных видов:

  • Синтаксические
  • Недостаточно памяти
  • Ошибки рекурсии
  • Исключения

Разберем их по очереди.

Синтаксические ошибки (SyntaxError)

Синтаксические ошибки часто называют ошибками разбора. Они возникают, когда интерпретатор обнаруживает синтаксическую проблему в коде.

Рассмотрим на примере.

Стрелка вверху указывает на место, где интерпретатор получил ошибку при попытке исполнения. Знак перед стрелкой указывает на причину проблемы. Для устранения таких фундаментальных ошибок Python будет делать большую часть работы за программиста, выводя название файла и номер строки, где была обнаружена ошибка.

Недостаточно памяти (OutofMemoryError)

Ошибки памяти чаще всего связаны с оперативной памятью компьютера и относятся к структуре данных под названием “Куча” ( heap ). Если есть крупные объекты (или) ссылки на подобные, то с большой долей вероятности возникнет ошибка OutofMemory . Она может появиться по нескольким причинам:

  • Использование 32-битной архитектуры Python (максимальный объем выделенной памяти невысокий, между 2 и 4 ГБ);
  • Загрузка файла большого размера;
  • Запуск модели машинного обучения/глубокого обучения и много другое;

Обработать ошибку памяти можно с помощью обработки исключений — резервного исключения. Оно используется, когда у интерпретатора заканчивается память и он должен немедленно остановить текущее исполнение. В редких случаях Python вызывает OutofMemoryError , позволяя скрипту каким-то образом перехватить самого себя, остановить ошибку памяти и восстановиться.

Но поскольку Python использует архитектуру управления памятью из языка C (функция malloc() ), не факт, что все процессы восстановятся — в некоторых случаях MemoryError приведет к остановке. Следовательно, обрабатывать такие ошибки не рекомендуется, и это не считается хорошей практикой.

Ошибка рекурсии (RecursionError)

Эта ошибка связана со стеком и происходит при вызове функций. Как и предполагает название, ошибка рекурсии возникает, когда внутри друг друга исполняется много методов (один из которых — с бесконечной рекурсией), но это ограничено размером стека.

Все локальные переменные и методы размещаются в стеке. Для каждого вызова метода создается стековый кадр (фрейм), внутрь которого помещаются данные переменной или результат вызова метода. Когда исполнение метода завершается, его элемент удаляется.

Чтобы воспроизвести эту ошибку, определим функцию recursion , которая будет рекурсивной — вызывать сама себя в бесконечном цикле. В результате появится ошибка StackOverflow или ошибка рекурсии, потому что стековый кадр будет заполняться данными метода из каждого вызова, но они не будут освобождаться.

Ошибка отступа (IndentationError)

Эта ошибка похожа по духу на синтаксическую и является ее подвидом. Тем не менее она возникает только в случае проблем с отступами.

Исключения

Даже если синтаксис в инструкции или само выражение верны, они все равно могут вызывать ошибки при исполнении. Исключения Python — это ошибки, обнаруживаемые при исполнении, но не являющиеся критическими. Скоро вы узнаете, как справляться с ними в программах Python. Объект исключения создается при вызове исключения Python. Если скрипт не обрабатывает исключение явно, программа будет остановлена принудительно.

Программы обычно не обрабатывают исключения, что приводит к подобным сообщениям об ошибке:

Ошибка типа (TypeError)

Ошибка деления на ноль (ZeroDivisionError)

Есть разные типы исключений в Python и их тип выводится в сообщении: вверху примеры TypeError и ZeroDivisionError . Обе строки в сообщениях об ошибке представляют собой имена встроенных исключений Python.

Оставшаяся часть строки с ошибкой предлагает подробности о причине ошибки на основе ее типа.

Теперь рассмотрим встроенные исключения Python.

Встроенные исключения

Прежде чем переходить к разбору встроенных исключений быстро вспомним 4 основных компонента обработки исключения, как показано на этой схеме.

  • Try : он запускает блок кода, в котором ожидается ошибка.
  • Except : здесь определяется тип исключения, который ожидается в блоке try (встроенный или созданный).
  • Else : если исключений нет, тогда исполняется этот блок (его можно воспринимать как средство для запуска кода в том случае, если ожидается, что часть кода приведет к исключению).
  • Finally : вне зависимости от того, будет ли исключение или нет, этот блок кода исполняется всегда.
Читайте также:  Язык программирования командной строки windows

В следующем разделе руководства больше узнаете об общих типах исключений и научитесь обрабатывать их с помощью инструмента обработки исключения.

Ошибка прерывания с клавиатуры (KeyboardInterrupt)

Исключение KeyboardInterrupt вызывается при попытке остановить программу с помощью сочетания Ctrl + C или Ctrl + Z в командной строке или ядре в Jupyter Notebook. Иногда это происходит неумышленно и подобная обработка поможет избежать подобных ситуаций.

В примере ниже если запустить ячейку и прервать ядро, программа вызовет исключение KeyboardInterrupt . Теперь обработаем исключение KeyboardInterrupt .

Стандартные ошибки (StandardError)

Рассмотрим некоторые базовые ошибки в программировании.

Арифметические ошибки (ArithmeticError)

  • Ошибка деления на ноль (Zero Division);
  • Ошибка переполнения (OverFlow);
  • Ошибка плавающей точки (Floating Point);

Все перечисленные выше исключения относятся к классу Arithmetic и вызываются при ошибках в арифметических операциях.

Деление на ноль (ZeroDivisionError)

Когда делитель (второй аргумент операции деления) или знаменатель равны нулю, тогда результатом будет ошибка деления на ноль.

Переполнение (OverflowError)

Ошибка переполнение вызывается, когда результат операции выходил за пределы диапазона. Она характерна для целых чисел вне диапазона.

Ошибка утверждения (AssertionError)

Когда инструкция утверждения не верна, вызывается ошибка утверждения.

Рассмотрим пример. Предположим, есть две переменные: a и b . Их нужно сравнить. Чтобы проверить, равны ли они, необходимо использовать ключевое слово assert , что приведет к вызову исключения Assertion в том случае, если выражение будет ложным.

Ошибка атрибута (AttributeError)

При попытке сослаться на несуществующий атрибут программа вернет ошибку атрибута. В следующем примере можно увидеть, что у объекта класса Attributes нет атрибута с именем attribute .

Ошибка импорта (ModuleNotFoundError)

Ошибка импорта вызывается при попытке импортировать несуществующий (или неспособный загрузиться) модуль в стандартном пути или даже при допущенной ошибке в имени.

Ошибка поиска (LookupError)

LockupError выступает базовым классом для исключений, которые происходят, когда key или index используются для связывания или последовательность списка/словаря неверна или не существует.

Здесь есть два вида исключений:

  • Ошибка индекса ( IndexError );
  • Ошибка ключа ( KeyError );

Ошибка ключа

Если ключа, к которому нужно получить доступ, не оказывается в словаре, вызывается исключение KeyError .

Ошибка индекса

Если пытаться получить доступ к индексу (последовательности) списка, которого не существует в этом списке или находится вне его диапазона, будет вызвана ошибка индекса (IndexError: list index out of range python).

Ошибка памяти (MemoryError)

Как уже упоминалось, ошибка памяти вызывается, когда операции не хватает памяти для выполнения.

Ошибка имени (NameError)

Ошибка имени возникает, когда локальное или глобальное имя не находится.

В следующем примере переменная ans не определена. Результатом будет ошибка NameError .

Ошибка выполнения (Runtime Error)

Ошибка «NotImplementedError»
Ошибка выполнения служит базовым классом для ошибки NotImplemented . Абстрактные методы определенного пользователем класса вызывают это исключение, когда производные методы перезаписывают оригинальный.

Ошибка типа (TypeError)

Ошибка типа вызывается при попытке объединить два несовместимых операнда или объекта.

В примере ниже целое число пытаются добавить к строке, что приводит к ошибке типа.

Ошибка значения (ValueError)

Ошибка значения вызывается, когда встроенная операция или функция получают аргумент с корректным типом, но недопустимым значением.

В этом примере встроенная операция float получат аргумент, представляющий собой последовательность символов (значение), что является недопустимым значением для типа: число с плавающей точкой.

Пользовательские исключения в Python

В Python есть много встроенных исключений для использования в программе. Но иногда нужно создавать собственные со своими сообщениями для конкретных целей.

Это можно сделать, создав новый класс, который будет наследовать из класса Exception в Python.

В предыдущем примере если ввести что-либо меньше 1, будет вызвано исключение. Многие стандартные исключения имеют собственные исключения, которые вызываются при возникновении проблем в работе их функций.

Недостатки обработки исключений в Python

У использования исключений есть свои побочные эффекты, как, например, то, что программы с блоками try-except работают медленнее, а количество кода возрастает.

Дальше пример, где модуль Python timeit используется для проверки времени исполнения 2 разных инструкций. В stmt1 для обработки ZeroDivisionError используется try-except, а в stmt2 — if . Затем они выполняются 10000 раз с переменной a=0 . Суть в том, чтобы показать разницу во времени исполнения инструкций. Так, stmt1 с обработкой исключений занимает больше времени чем stmt2 , который просто проверяет значение и не делает ничего, если условие не выполнено.

Поэтому стоит ограничить использование обработки исключений в Python и применять его в редких случаях. Например, когда вы не уверены, что будет вводом: целое или число с плавающей точкой, или не уверены, существует ли файл, который нужно открыть.

Выводы!

Как вы могли увидеть, обработка исключений помогает прервать типичный поток программы с помощью специального механизма, который делает код более отказоустойчивым.

Обработка исключений — один из основных факторов, который делает код готовым к развертыванию. Это простая концепция, построенная всего на 4 блоках: try выискивает исключения, а except их обрабатывает.

Очень важно поупражняться в их использовании, чтобы сделать свой код более отказоустойчивым.

Подписывайтесь на канал в Дзене

Полезный контент для начинающих и опытных программистов в канале Лента Python разработчика — Как успевать больше, делать лучше и не потерять мотивацию.

Оцените статью