- Pocketsphinx. Распознавание речи и голосовое управление в Linux
- http://habrahabr.ru/post/167479/
- Введение
- Описание и установка
- Базовое использование
- Адаптация звуковой модели
- Тестирование адаптации
- Русский язык в Pocketsphinx
- Реализация голосового управления
- Pocketsphinx. Распознавание речи и голосовое управление в Linux
- Введение
- Описание и установка
- Базовое использование
- Адаптация звуковой модели
- Тестирование адаптации
- Русский язык в Pocketsphinx
- Реализация голосового управления
Pocketsphinx. Распознавание речи и голосовое управление в Linux
http://habrahabr.ru/post/167479/
Введение
В 1997-ом году Лукьяненко пророчил для десктопа сочетание CLI и голосового управления. Однако сейчас голосовое управление — достаточно узкая ниша.
Голосовое управление — взаимодействие с устройством при помощи звуковых команд. Не путайте это понятие с распознаванием речи. Для голосового управления достаточно, чтобы устройство реагировало на единственную нужную команду (ведь ваша собака не может работать машинисткой?). Распознавание речи — гораздо более глобальная проблема: в этом случае устройство должно преобразовывать в текстовый формат все слова, произнесенные вами. Как легко догадаться, распознавание речи на данный момент реализовано поверхностно относительно человеческих возможностей.
Функционал, рассмотренный в статье, может быть применен, к примеру, для организации модного сейчас «умного дома» или просто управления компьютером. Честно говоря, для описания управления компьютером хватило бы пары абзацев, но я попытаюсь показать вам основы работы с CMU Sphinx.
Кстати, процентов 70 описанного здесь подойдет и пользователям Windows.
Для Linux чаще всего упоминаются два развитых проекта распознавания речи: CMU Sphinx и Julius.
В данной статье я не буду касаться Julius, поскольку гайдов по его использованию (в том числе и в Рунете) хватает. Речь будет идти о CMU Sphinx.
Описание и установка
На официальном сайте последняя версия pocketsphinx и sphinxbase — 0.8. В репозитории моего Debian Squeeze есть только устаревшая ветка sphinx2. Значит, будем собирать (проверьте репозитории своих дистрибутивов: в последних версиях Ubuntu и Fedora должны быть актуальные версии). При необходимости вместо pocketsphinx, написанного на C, вы можете использовать Sphinx4 на Java (подробнее).
Скачиваем отсюда исходники pocketsphinx и sphinxbase («support library required by Pocketsphinx and Sphinxtrain») и собираем.
Не забудьте после установки выполнить:
Для работы с /dev/dsp установим согласно FAQ пакет oss-compat
Базовое использование
Проект предлагает нам проверить работоспособность на базовом примере: распознать фразу на английском «go forward ten meters».
Что ж, пробуем.
Мы воспользуемся утилитой пакетного распознавания pocketsphinx_batch (перед использованием почитайте её man). Также есть утилита распознавания «с микрофона» — pocketsphinx_continuous (синтаксис её схож с pocketsphinx_batch).
Работать будем в отдельной директории, к примеру
/sphinx.
Синтаксис нашей команды таков:
-argflie: имя файла в текущей директории, содержащего все аргументы.
stderr для удобства перенаправим в файл.
Содержимое argfile:
-hmm: путь к каталогу, содержащему файлы акустической модели (шаблоны отдельных звуков).
-lm: путь к файлу триграммной языковой модели (можете почитать здесь).
-dict: путь к файлу словаря произношения.
-cepdir: путь к каталогу со звуковыми файлами. Будьте внимательны: если вы вносите -cepdir в файл аргументов, то сокращенный путь
/sphinx обрабатывается неправильно: приходится писать полный путь. Если вы будете прописывать аргумент после команды, то можете использовать сокращенный путь.
-ctl: файл (нужно создать) с именами обрабатываемых файлов (без указания расширений). Файл goforward.raw мы возьмем из комплекта исходников pocketsphinx (там есть еще пару файлов *.raw — можете распознать и их).
-cepext: расширение обрабатываемых файлов
-adcin: указатель принадлежности обрабатываемого файла к raw.
-hyp: имя файла, в который будет выведен распознанный текст.
Аргументы с путями к файлам моделей указывать обязательно. Помните, что многие параметры заданы по умолчанию (смотрите stderr). Поэтому для работы с файлом *.raw необходимо принудительно указать расширение, иначе будет использован параметр по умолчанию — расширение .mfc (а таких файлов у нас в базовом примере, естественно, нету — будут сыпаться ошибки).
В результате исполнения у нас в файле outname будет следующее содержимое:
Параллельно можете посмотреть, откомпилировать и запустить в каталоге с файлом goforward.raw программку аналогичного назначения на C (пример от разработчиков).
Для проверки на своих примерах я решил не мудрствовать и воспользовался sox (проверьте, установлен ли этот пакет у вас).
Писать звук будем следующим образом (можете почитать man sox ):
— для raw
Окончание записи по Ctrl+C .
У меня sox при этом ругался на невозможность использования частоты дискретизации: can’t set sample rate 16000; using 48000 . Учтите: нагло лжет — на самом деле все в порядке.
Я писал и распознавал raw и wav на различных примерах из подключенных словарей — все распознавалось вполне приемлимо.
Адаптация звуковой модели
Адаптация звуковой модели должна улучшить распознавание для конкретного голоса, произношения, акцента или окружающей среды. Рассмотрим этот процесс.
Скачиваем по первой ссылке предлагаемые файлы в отдельную директорию, в которой и будем работать.
Теперь надиктуем предложения из файла arctic20.txt по образцу: у вас должно получиться двадцать файлов, названных по порядку согласно схеме arctic_0001.wav . arctic_0020.wav .
Чтобы упростить запись, воспользуемся предложенным скриптом:
Соответственно, чтобы прослушать полученное, выполним:
Скопируем акустическую модель (с которой мы и работали) из /usr/local/share/pocketsphinx/model/hmm/en_US/hub4wsj_sc_8k в нашу рабочую директорию.
Теперь создадим файлы акустических особенностей (напоминаю: работаем в директории с файлами *.wav).
В результате получаем файлы *.mfc.
Скачиваем экстра-пак (89,0 МБ); файл под названием mixture_weights из него, расположенный в pocketsphinx-extra/model/hmm/en_US/hub4_wsj_sc_3s_8k.cd_semi_5000 помещаем в каталог с акустической моделью.
Также необходимо конвертировать mdef-файл акустической модели в текстовый формат:
Теперь, согласно терминологии гайда по адаптации, соберем накопленные данные. Скопируем утилиту bw из /usr/local/libexec/sphinxtrain/bw в рабочий каталог (перед этим не забудьте установить sphinxtrain!).
Запускаем и видим:
SYSTEM_ERROR: «corpus.c», line 339: Unable to open arctic20.fileids for reading: No such file or directory
Очевидно, правая рука у разработчиков не ведает, что творит левая (про неактуальность части документации я уже не говорю).
Переименовываем в рабочем каталоге файл arctic20.listoffiles в arctic20.fileids
Теперь все работает.
Произведем MLLR-адаптацию (эффективна для ограниченного объема данных в модели):
Эта команда создаст файл адаптационных данных mllr_matrix .
Теперь при распознавании с адаптированной моделью можно добавлять параметр -mllr /path/to/mllr_matrix .
Параллельно произведем другой метод адаптации: MAP.
Сделаем копию модели:
И произведем MAP-адаптацию:
Теперь создадим sendump файл, отличающийся меньшим размером:
Тестирование адаптации
Суть эксперимента: мы записываем несколько образцов, на которых оригинальная акустическая модель спотыкается, и обрабатываем их с помощью адаптированных акустических моделей.
Создадим в рабочем каталоге поддиректорию test . В ней создаем поддиректорию wav , в которой будут наши тестовые записи.
Здесь для подтверждения результата эксперимента я выкладываю свои образцы и две адаптированные акустические модели.
Проверяем (помните, что адаптация не приведет к стопроцентно верному результату: адаптированные модели будут точно так же ошибаться; плюс в том, что они будут делать это реже. Мои вполне наглядные записи были сделаны далеко не с первой попытки: было достаточно записей, где ошибались все модели):
1. Распознавание с помощью базовой модели:
2. Распознавание с помощью модели с MLLR-адаптацией: при указании параметром -mllr пути к моей матрице происходила ошибка сегментирования (копаться я не стал). При распознавании без этой опции результат полностью идентичен результату оригинальной модели.
Впрочем, в мануале заявлено, что MLLR-адаптация лучше всего подходит для непрерывной модели (т.е. для Sphinx4).
3. Распознавание с помощью модели с MAP-адаптацией:
Как можно убедиться, результат полностью идентичен записи. Адаптация реально работает!
Русский язык в Pocketsphinx
Скачаем отсюда русские модели, созданные на voxforge. На разнообразие моделей можно посмотреть здесь и просто в интернетах.
Реализовывать пример голосового управления компьютером мы будем на русском, а значит нам нужны собственная языковая модель и собственный словарь (вероятнее всего, части наших слов в распространенных примерах не будет).
Создание собственной статической языковой модели
Вообще, для малого количества слов вместо статической языковой модели можно использовать jsgf-словарь. Однако, это частный случай и мы его рассмотрим чуть ниже.
Руководство по созданию языковой модели находится здесь.
Создавать будем с помощью CMUCLMTK.
Скачиваем, собираем.
Для начала создадим текстовый файл с предложениями для нашей языковой модели.
Далее создаем словарный файл:
Создаем языковую модель в arpa-формате:
И создаем DMP-модель.
Создание собственного словаря
Тащим с гитхаба утилиты:
Переходим в каталог ./yourdir/text2dict и создаем там текстовый файл my_dictionary с вашим списком слов (каждое новое слово — с нового абзаца).
И вот ваш словарь создан.
Теперь пробуем распознавать слова, присутствующие в словаре (благо, в нашем примере их немного). Не забудьте указать в аргументах собственную языковую модель и словарь — все должно работать. При желании можно произвести адаптацию акустической модели (сразу предупреждаю: при использовании утилиты bw в процессе адаптации для большинства акустических моделей опция -svspec не нужна ).
Использование JavaScript Grammar File вместо статической языковой модели
«|» обозначает условие выбора. Т.е. мы можем сказать «тише» или «закрыть окно». Правда, по сравнению с использованием языковой модели есть один минус: говорить нужно гораздо членораздельнее.
Созданный jsgf-файл указываем с параметром -jsgf (параметр -lm в таком случае не нужен).
Реализация голосового управления
Моей целью не было реализовать крутой интерфейс управления: здесь все будет очень примитивно (если есть желание и возможность, можете посмотреть на заброшенный проект Gnome Voice Control).
Действовать будем следующим образом:
1. Пишем команду, распознаем её.
2. Передаем распознанный текст в файл, в соответствии с ним выполняем команду.
В качестве тестовых команд будем использовать уменьшение и увеличение громкости звука.
Внимательно почитав мануал к sox, я решил оканчивать запись по истечении секунды тишины с порогом тишины в 3.8% (порог явно является сугубо индивидуальным значением и зависит от вашего микрофона и окружающей обстановки).
К сожалению, я не нашел в pocketsphinx_batch параметр вывода только для распознанных слов, поэтому я воспользуюсь инструментом sed :
Эта конструкция удалит из строки вида «наша команда (audio -4023)» пробел перед открывающей скобкой, её саму и все последующее содержимое. В результате мы получим строку вида «наша команда», что нам и нужно.
Вот сам скрипт:
Скрипт в ответ на команды «тише» или «громче» выполняет соответствующие действия с сигнализацией через notify-send.
К сожалению, работать он будет только при запуске из терминала (иначе звук не пишется). Впрочем, представление о голосовом управлении он дает (возможно, вы предложите лучший метод).
Источник
Pocketsphinx. Распознавание речи и голосовое управление в Linux
— Всё в порядке, Лёня?
Динамики отрегулированы на максимум, я морщусь, отвечаю:
— Да. Тише звук.
— Звук — тише, — соглашается «Виндоус-Хоум», — тише, тише…
— Хватит, Вика
С.Лукьяненко, «Лабиринт отражений»
Введение
В данной статье я не буду касаться Julius, поскольку гайдов по его использованию (в том числе и в Рунете) хватает. Речь будет идти о CMU Sphinx.
Описание и установка
Не забудьте после установки выполнить:
Для работы с /dev/dsp установим согласно FAQ пакет oss-compat.
Базовое использование
/sphinx.
Синтаксис нашей команды таков:
-argflie: имя файла в текущей директории, содержащего все аргументы.
stderr для удобства перенаправим в файл.
Содержимое argfile:
-hmm: путь к каталогу, содержащему файлы акустической модели (шаблоны отдельных звуков).
-lm: путь к файлу триграммной языковой модели (можете почитать здесь).
-dict: путь к файлу словаря произношения.
-cepdir: путь к каталогу со звуковыми файлами. Будьте внимательны: если вы вносите -cepdir в файл аргументов, то сокращенный путь
/sphinx обрабатывается неправильно: приходится писать полный путь. Если вы будете прописывать аргумент после команды, то можете использовать сокращенный путь.
-ctl: файл с именами обрабатываемых файлов. Файл goforward.raw мы возьмем из комплекта исходников pocketsphinx (там есть еще пару файлов *.raw — можете распознать и их).
-cepext: расширение обрабатываемых файлов
-adcin: указатель принадлежности обрабатываемого файла к raw.
-hyp: имя файла, в который будет выведен распознанный текст.
Аргументы с путями к файлам моделей указывать обязательно. Помните, что многие параметры заданы по умолчанию (смотрите stderr). Поэтому для работы с файлом *.raw необходимо принудительно указать расширение, иначе будет использован параметр по умолчанию — расширение .mfc (а таких файлов у нас в базовом примере, естественно, нету — будут сыпаться ошибки).
В результате исполнения у нас в файле outname будет следующее содержимое:
Параллельно можете посмотреть, откомпилировать и запустить в каталоге с файлом goforward.raw программку аналогичного назначения на C (пример от разработчиков).
Для проверки на своих примерах я решил не мудрствовать и воспользовался sox (проверьте, установлен ли этот пакет у вас).
Писать звук будем следующим образом (можете почитать man sox ):
— для raw
Окончание записи по Ctrl+C .
У меня sox при этом ругался на невозможность использования частоты дискретизации: can’t set sample rate 16000; using 48000 . Учтите: нагло лжет — на самом деле все в порядке.
Я писал и распознавал raw и wav на различных примерах из подключенных словарей — все распознавалось вполне приемлимо.
Адаптация звуковой модели
Скачиваем по первой ссылке предлагаемые файлы в отдельную директорию, в которой и будем работать.
Теперь надиктуем предложения из файла arctic20.txt по образцу: у вас должно получиться двадцать файлов, названных по порядку согласно схеме arctic_0001.wav . arctic_0020.wav .
Чтобы упростить запись, воспользуемся предложенным скриптом:
Соответственно, чтобы прослушать полученное, выполним:
Скопируем акустическую модель (с которой мы и работали) из /usr/local/share/pocketsphinx/model/hmm/en_US/hub4wsj_sc_8k в нашу рабочую директорию.
Теперь создадим файлы акустических особенностей (напоминаю: работаем в директории с файлами *.wav).
В результате получаем файлы *.mfc.
Скачиваем экстра-пак (89,0 МБ); файл под названием mixture_weights из него, расположенный в pocketsphinx-extra/model/hmm/en_US/hub4_wsj_sc_3s_8k.cd_semi_5000 помещаем в каталог с акустической моделью.
Также необходимо конвертировать mdef-файл акустической модели в текстовый формат:
Теперь, согласно терминологии гайда по адаптации, соберем накопленные данные. Скопируем утилиту bw из /usr/local/libexec/sphinxtrain/bw в рабочий каталог (перед этим не забудьте установить sphinxtrain!).
Запускаем и видим:
SYSTEM_ERROR: «corpus.c», line 339: Unable to open arctic20.fileids for reading: No such file or directory
Очевидно, правая рука у разработчиков не ведает, что творит левая (про неактуальность части документации я уже не говорю).
Переименовываем в рабочем каталоге файл arctic20.listoffiles в arctic20.fileids
Теперь все работает.
Произведем MLLR-адаптацию (эффективна для ограниченного объема данных в модели):
Эта команда создаст файл адаптационных данных mllr_matrix .
Теперь при распознавании с адаптированной моделью можно добавлять параметр -mllr /path/to/mllr_matrix .
Параллельно произведем другой метод адаптации: MAP.
Сделаем копию модели:
И произведем MAP-адаптацию:
Теперь создадим sendump файл, отличающийся меньшим размером:
Тестирование адаптации
Проверяем (помните, что адаптация не приведет к стопроцентно верному результату: адаптированные модели будут точно так же ошибаться; плюс в том, что они будут делать это реже. Мои вполне наглядные записи были сделаны далеко не с первой попытки: было достаточно записей, где ошибались все модели):
1. Распознавание с помощью базовой модели:
2. Распознавание с помощью модели с MLLR-адаптацией: при указании параметром -mllr пути к моей матрице происходила ошибка сегментирования (копаться я не стал). При распознавании без этой опции результат полностью идентичен результату оригинальной модели.
Впрочем, в мануале заявлено, что MLLR-адаптация лучше всего подходит для непрерывной модели (т.е. для Sphinx4).
3. Распознавание с помощью модели с MAP-адаптацией:
Как можно убедиться, результат полностью идентичен записи. Адаптация реально работает!
Русский язык в Pocketsphinx
Скачаем отсюда русские модели, созданные на voxforge. На разнообразие моделей можно посмотреть здесь и просто в интернетах.
Реализовывать пример голосового управления компьютером мы будем на русском, а значит нам нужны собственная языковая модель и собственный словарь (вероятнее всего, части наших слов в распространенных примерах не будет).
Создание собственной статической языковой модели
Далее создаем словарный файл:
Создаем языковую модель в arpa-формате:
И создаем DMP-модель.
Создание собственного словаря
Тащим с гитхаба утилиты:
Переходим в каталог ./yourdir/text2dict и создаем там текстовый файл my_dictionary с вашим списком слов (каждое новое слово — с нового абзаца).
И вот ваш словарь создан.
Теперь пробуем распознавать слова, присутствующие в словаре (благо, в нашем примере их немного). Не забудьте указать в аргументах собственную языковую модель и словарь — все должно работать. При желании можно произвести адаптацию акустической модели (сразу предупреждаю: при использовании утилиты bw в процессе адаптации для большинства акустических моделей опция -svspec не нужна ).
Использование JavaScript Grammar File вместо статической языковой модели
«|» обозначает условие выбора. Т.е. мы можем сказать «тише» или «закрыть окно». Правда, по сравнению с использованием языковой модели есть один минус: говорить нужно гораздо членораздельнее.
Созданный jsgf-файл указываем с параметром -jsgf (параметр -lm в таком случае не нужен).
Реализация голосового управления
Моей целью не было реализовать крутой интерфейс управления: здесь все будет очень примитивно (если есть желание и возможность, можете посмотреть на заброшенный проект Gnome Voice Control).
Действовать будем следующим образом:
1. Пишем команду, распознаем её.
2. Передаем распознанный текст в файл, в соответствии с ним выполняем команду.
В качестве тестовых команд будем использовать уменьшение и увеличение громкости звука.
Внимательно почитав мануал к sox, я решил оканчивать запись по истечении секунды тишины с порогом тишины в 3.8% (порог явно является сугубо индивидуальным значением и зависит от вашего микрофона и окружающей обстановки).
К сожалению, я не нашел в pocketsphinx_batch параметр вывода только для распознанных слов, поэтому я воспользуюсь инструментом sed :
Эта конструкция удалит из строки вида «наша команда (audio -4023)» пробел перед открывающей скобкой, её саму и все последующее содержимое. В результате мы получим строку вида «наша команда», что нам и нужно.
Вот сам скрипт:
Скрипт в ответ на команды «тише» или «громче» выполняет соответствующие действия с сигнализацией через notify-send.
К сожалению, работать он будет только при запуске из терминала (иначе звук не пишется). Впрочем, представление о голосовом управлении он дает (возможно, вы предложите лучший метод).
Источник