- Что такое Linux (и другие вопросы)
- Что такое Linux
- Что значит ядро Linux?
- Linux — это версия Unix?
- Что такое дистрибутив Linux
- Почему дистрибутивов так много
- Получается, Linux — это бесплатно?
- Как выглядит интерфейс Linux
- Для чего используется Linux
- Можно ли играть в игры на Linux
- А что со специализированным железом и софтом?
- Можно ли запускать на Linux программы от MacOS или Windows?
- Что дальше
- Анатомия GNU/Linux
- Загрузчик
- Начальный образ загрузки
- Командная оболочка
- Графический сервер
- Дисплейный менеджер
- Окружение рабочего стола
- Графические тулкиты
- Графическое API
- Безопасность
- Подсистема печати
- Звуковая подсистема
- Межпроцессное взаимодействие
- Межсетевой экран
- Пакетный менеджер
- Заключение
Что такое Linux (и другие вопросы)
Быстрое знакомство с самой многогранной операционной системой
Операционная система Linux работает почти на всех серверах в интернете. При этом Linux — это не название какой-то одной операционной системы, а общее название для сотен систем. Давайте разберёмся, как это вообще возможно.
Что такое Linux
Linux — это одновременно две вещи:
- Название ядра операционной системы (то есть центральный модуль, который отвечает за базовые возможности системы).
- Название семейства операционных систем, в которое, по разным подсчётам, входит от 500 до 600 операционок для разных задач.
Отдельной операционки под названием Linux нет, но если вы знаете принципы работы одной системы, вы сможете легко разобраться во всех остальных.
Что значит ядро Linux?
Ядро Linux — это то, что разработал программист Линус Торвальдс, когда хотел получить основные возможности UNIX, но без ограничения на коммерческое использование.
Ядро операционной системы отвечает за её базовые команды и операции, которые она умеет делать:
- управление памятью — выделить место программе, ограничить, очистить;
- управление процессами — запустить, дать ресурсы, убить;
- управление железом — в ядро встроены драйверы для некоторого набора оборудования, чтобы операционка сразу работала на железе;
- обмен информацией между процессами, службами и программами — чтобы программы могли отправлять запросы в интернет, писать данные на диск, читать с диска, запускать друг друга, обращаться к системе и т. д.
Ядро практически не видимо для пользователя, его нельзя «открыть», у него нет видимых для пользователя окон и кнопок. В ядро даже нельзя ввести команду с клавиатуры. Это как рептильный мозг человека: у нас нет к нему осознанного доступа и мы не можем остановить себе сердце силой мысли, но благодаря этому «ядру» у нас бьётся сердце.
Поверх ядра Linux разные программисты сделали свои версии операционных систем: RedHat, Ubuntu, Mint Linux и много-много других. Вот и получается, что ядро в основе — одно, а дистрибутивов Linux — много.
Linux — это версия Unix?
Нет, несмотря на похожие названия, это разные продукты.
Unix был создан в компании AT&T в 1970-х. Это была коммерческая операционка, которую хоть и лицензировали для университетов, но всё равно на ней хотели зарабатывать. UNIX существует как отдельная операционная система до сих пор и используется на сетевом оборудовании.
Linux создана в начале 90-х с нуля как открытая альтернатива Unix. В Linux используются многие принципы и механизмы Unix, но код другой. Более того, код Linux открытый: кто угодно может скачать исходник ядра Linux и посмотреть, как там всё устроено.
Возможно, именно благодаря открытости Linux стал настолько популярной операционной системой с сотнями дистрибутивов.
Что такое дистрибутив Linux
Дистрибутив Linux — это когда разные компании и разработчики берут ядро и добавляют сверху какой-то набор программ: оболочки, компиляторы, драйверы и всё остальное. Это уже становится полноценной операционной системой, и каждая из таких сборок имеет своё название.
Количество дистрибутивов Linux огромно — около 500 более-менее известных и бесчисленное множество разных сборок под разные задачи.
Любой человек, почитав полдня документацию и сформулировав свою задачу, сможет собрать собственный дистрибутив Linux — например под старый компьютер, для обучения, напичканный играми или для веб-разработки.
Почему дистрибутивов так много
Потому что каждая компания считает важным что-то своё:
- одни хотят сделать операционку с красивым интерфейсом;
- другие делают акцент на безопасности и шифровании данных;
- третьи хотят расширенную поддержку сетевых протоколов;
- четвёртым нужна поддержка определённого оборудования;
- пятые хотят стабильности и отказоустойчивости;
- шестым нужно, чтобы система работала в брелке от сигнализации;
- а кому-то ещё — чтобы система работала на маломощном процессоре.
В зависимости от того, что для них важно, компании собирают свои дистрибутивы из разных компонентов.
Получается, Linux — это бесплатно?
В основном да, Linux — это бесплатно. Есть и коммерческие сборки Linux: ты платишь за софт и поддержку пользователей.
В этом и есть первая сила Linux — в бесплатности и доступности. Вторая суперсила — в гибкости и разнообразии настроек и специальных программ.
Как выглядит интерфейс Linux
Linux может выглядеть как угодно — смотря что вам нравится.
Когда вы смотрите на окна операционной системы, на самом деле вы смотрите на специальную программу-менеджер. Это надстройка над ядром, которая рисует красивые окна. В операционных системах Windows и MacOS оконные менеджеры стандартные и не меняются, а в Linux можно выбрать свой.
Дистрибутивы Linux выглядят по-разному в зависимости от того, какой оконный менеджер там стоит. Можно вообще обойтись без него.
Например, можно поставить себе оконный менеджер KDE:
Или можно использовать GNOME:
Или менеджер Xfce, если железо совсем слабое:
Можно вообще не пользоваться оконным менеджером и управлять всем из командной строки, как это делают на серверах:
Для чего используется Linux
Linux используется для чего угодно. Так как любой дистрибутив Linux собирается из разных кирпичиков, можно найти дистрибутивы:
- для домашнего ежедневного использования (например, Ubuntu);
- для реанимации старого железа (например, поставить Calculate для слабых компьютеров в школьных классах);
- для серверов предприятий;
- для суперкомпьютеров;
- для отказоустойчивых станций для работы в бесперебойном режиме;
- для систем безопасности и шифрования;
- для создания сети из компьютеров для параллельных вычислений;
- для обслуживания сигнализаций, умных домов и районов;
- для роутеров и прочего компьютерного железа;
- для роботов и робототехники.
Если того, что вам нужно, нет в списке, то вы можете сами сделать свой дистрибутив или взять что-то за основу и поставить туда нужный софт. Такой подход и делает Linux универсальной операционной системой для всего.
Можно ли играть в игры на Linux
В целом — да, но с ограничениями. Вот варианты:
- Можно играть в ретроигры с помощью любого из десятков эмуляторов консоли.
- Можно играть в некоторые PC-игры через эмулятор Windows (например, Wine). Игра может подтормаживать в зависимости от того, какое у вас железо и на какое железо была рассчитана игра.
- Можно играть в игры, портированные на SteamOS — это собственная среда Steam на базе Linux. Компания Valve очень старается сделать как можно больше игр для этой платформы, потому что от этого зависит работа их будущей консоли SteamDeck, так что в некоторые топовые игры поиграть всё-таки можно.
- Можно играть в игры, разработанные непосредственно для Linux.
На Linux можно поиграть в Doom Eternal. А в Doom 3 можно поиграть даже на Линуксе, который работает на одноплатном компьютере Raspberry Pi 4.
Основная проблема с играми на Linux — это передовые игры, которые используют максимум возможностей видеокарты. Не на все карты и не у всех производителей есть драйверы на Linux. Хотя со временем их становится всё больше, а некоторые ребята даже пишут собственные драйверы.
А что со специализированным железом и софтом?
На Linux есть масса профессионального софта для работы с графикой, видео и звуком. Это не такие комбайны, как у Adobe и Apple, но со своими задачами справляются.
Постепенно производители софта понимают важность Linux и выпускают для него полноценные версии своего софта. Например, Blackmagic сделали для Linux полноценную версию видеомонтажной программы Davinci Resolve.
Совместимость со специализированным железом под вопросом: есть железо, которое работает только на Linux. И есть железо, у которого вообще нет драйверов на Linux. Надо смотреть.
Можно ли запускать на Linux программы от MacOS или Windows?
В целом — да. На Linux можно установить эмуляторы других операционных систем. Например, Wine — это широко распространённый эмулятор Windows. Есть система VMWare Workstation, которая создаёт виртуальную машину внутри вашего Линукса, и там можно запустить что угодно.
Надо понимать, что любая эмуляция «отжирает» часть ресурсов компьютера и могут быть проблемы с совместимостью, поэтому ступайте осторожно.
Что дальше
В одном из следующих выпусков перейдём к практике — установим Linux на домашний компьютер. Лайк, подписка.
Источник
Анатомия GNU/Linux
Какое-то время назад на Хабре была небольшая волна постов на тему «Почему я [не] выбрал Linux». Как порядочный фанатик я стриггерился, однако решил, что продуктивнее что-нибудь рассказать о своей любимой системе, чем ломать копии в комментариях.
У меня сложилось впечатление, что многие пользователи GNU/Linux слабо представляют, из чего сделана эта операционная система, поэтому утверждают, что она сляпана из попавшихся под руку кусков. В то же время, архитектура большинства дистрибутивов является устоявшейся и регламентируется рядом стандартов, включая стандарт графического окружения freedesktop.org и Linux Standard Base, расширяющий стандарты Unix. Мне при знакомстве с GNU/Linux несколько лет назад для погружения не хватало простой анатомической карты типичного дистрибутива, поэтому я попробую рассказать об этом сам.
Загрузчик
Сеанс операционной системы начинается с загрузчика, как театр с вешалки. Дефолтным загрузчиком сегодня является GNU GRUB, известный так же как GRUB 2. По-прежнему доступна первая ветка, называемая теперь «GRUB Legacy». Другой загрузчик с давней историей — Syslinux.
Задача загрузчика — инициализировать ядро Linux. Для этого, в общем случае, нужно знать, где ядро лежит, и уметь прочитать это место (раздел Ext4, скажем). Ядру в помощь загрузчик обычно так же подтягивает начальный образ загрузки, о котором скажем позже. GRUB умеет много прочего, типа построения весьма сложных меню и чейнлоадинга других загрузчиков (Windows Boot Manager например). GRUB имеет конфигурационный синтаксис, отдалённо напоминающий шелл, и расширяется модулями.
GRUB велик и могуч, порой даже слишком, и встраиваемые системы часто используют компактный Das U-Boot.
Могучий Linux («не оставляй нас, монолит!»). Ядро операционной системы, созданное, чтобы работать с POSIX-совместимыми окружениями. Обычно лежит в /boot/ и содержит в названии слово vmlinuz , где «vm» напоминает нам о поддержке виртуальной памяти, а «z» указывает, что файл сжат.
В рамках одного дистрибутива может поддерживаться несколько вариантов ядра, например:
mainline («основное»);
LTS (с расширенной поддержкой);
rt (патченное для поддержки исполнения в режиме реального времени);
с различными патчами для повышения производительности или защищённости (zen, hardened etc);
libre (почищенное от проприетарных блобов ядро, ожидаемо поддерживающее мало оборудования).
совсем экзотичные варианты с не-Linux ядром типа Debian GNU/Hurd (с ядром GNU Hurd) и Debian GNU/kFreeBSD (с ядром FreeBSD соответственно). Это уже, конечно, не GNU/Linux.
Начальный образ загрузки
Начальный образ загрузки известен так же как initrd и initramfs. Представляет собой архив с образом файловой системы, развёртываемой в оперативную память в начале процесса загрузки. Несёт в себе различные драйверы и скрипты, позволяющие инициализировать оборудование и смонтировать файловые системы.
Содержимое начального образа загрузки зависит от версии ядра и потребностей пользователя (кто-то использует ZFS, а у кого-то корень зашифрован LUKS). Поэтому образ не поставляется в дистрибутивах. В дистрибутивах поставляются фреймворки для создания начальных образов по мере необходимости. Так, обычно создание свежего образа инициируется при обновлении ядра. Вот несколько популярных фреймворков:
initramfs-tools — детище Debian.
Dracut (произносится созвучно с сушёной кошкой) — в RHEL и производных (CentOS, Scientific Linux etc.). Наиболее гибкий и современный инструмент из перечисленных, если спросите меня.
mkinitcpio поставляется в Archlinux, хотя мейнтейнеры подумывают о Dracut, который уже включён в репозиторий и установочные образы.
make-initrd — свой путь у замечательного отечественного дистрибутива Alt Linux.
Тут же упомянем Plymouth, размещаемый в начальном образе. Это заставка (сплэш-скрин), позволяющая заменить вывод ядра при загрузке на произвольную анимированную картинку, например логотип дистрибутива, что принято в «дружелюбных к пользователю»™ дистрибутивах типа Ubuntu и Fedora.
Система инициализации — это пастырь процессов. Она стартует раньше всех и имеет PID 1. Она определяет уровень запуска системы и жизненный цикл большинства служб. Независмо от того, что за система инициализации представлена, она предлагает исполняемые файлы /sbin/init (или /usr/bin/init , или в том же духе, ну вы поняли).
Холиварный элемент. Много лет с нами была Sysvinit, пришедшая из варианта ОС Unix System V. Sysvinit полагалась в огромной степени на скрипты инициализации. Служил этот инит, в общем, исправно, но постепенно некоторым инженерам стало мозолить глаза последовательное исполнение скриптов и собственно скрипты, известные в жарких спорах за свою распростёртость как «баш-портянки». В конце 00-ых-начале 10-ых как грибы после дождя расплодились альтернативные системы инициализации: OpenRC от Gentoo, Upstart от Canonical, Systemd от Red Hat за авторством Леннарта Поттеринга. В конце концов по причинам техническим и политическим всех сожрала Systemd. Её восхваляют и ненавидят. Восхваляют в основном за простой и лаконичный синтаксис служб. Так, скрипт запуска веб-сервера Apache для классического инита занимает 153 строки включая комментарии, а файл службы из пакета apache в Arch Linux — 15 строк. Недолюбливают в основном за то, что эта система инициализации подрабатывает ещё и резолвером, планировщиком, менеджером сети, менеджером монтирования и Бог весть ещё чем, попирая дзен Unix.
Командная оболочка
Командная оболочка, она же командный интерпретатор или просто шелл. Неискушённый пользователь скажет — «в гробу я этот шелл видал, можно в графическом режиме жить», и будет неправ, поскольку шелл прописан в стандарте POSIX и необходим для работоспособности системы. Есть понятие «оболочка входа» (login shell) — это первый процесс, запускамый при входе пользователя. Он подтягивает опции и переменные окружения из конфигурационных файлов, все последующие процессы запускаются в контексте этого шелла. Что будет запущено в качестве оболочки входа, определяется в /etc/passwd .
Наиболее распространены сегодня следующие оболочки:
Bourne shell (sh) — «тот самый шелл», сложно найти дистрибутив без него.
Bourne again shell (bash) — принят по умолчанию в качестве пользователькой оболочки в большинстве GNU/Linux дистрибутивов и предлагает ряд удобств по сравнению с sh.
Debian Almquist shell (dash) — компактная облочка, совместимая с sh. Традиционно используется в Debian, где /usr/bin/sh на неё ссылается.
Z shell (zsh) — похож на bash, но предлагает оригинальные фишечки для интерактивного ввода. Редко идёт из коробки, но обычно поставляется в репозитории.
BusyBox — утилита для встраиваемых систем, которая предоставляет целое пользовательское окружение, в том числе — POSIX-совместимый шелл (вызывается так: $ busybox sh ).
Графический сервер
Демон, отвечающий за отрисовку окошек. Золотой стандарт графического сервера — X Window System с нами аж с 1984 года. Это именно стандарт, архитектура и набор протоколов. Реализаций за прошедшие годы была уйма, в каждой собственнической Unix-системе была своя. В GNU/Linux (и BSD) долгое время применялся Xfree86. Теперь с нами X.Org Server, или просто Xorg, он отпочковался от XFree86.
X Window System — мощная и богатая система, так, одна из возможностей — сетевая прозрачность. Вы можете запустить на своём хосте графическое приложение с другой машины, даже когда на той машине графический сервер не запущен. При помощи SSH это можно сделать, например, так (может потребоваться небольшая донастройка sshd):
Надо сказать, терминология X Window System контринтуитивна: клиентом называется графическое приложение, а сервером — отрисовывающее. На этот счёт прошлись в классической монографии «The UNIX-HATERS Handbook».
Другая возможность X, отрисовка графических примитивов и текстовых глифов, использовалась в старые времена, когда мужчины были мужчинами и рисовали окошки сами, без тулкитов.
В окружениях рабочих столов активно используется X keyboard extension, расширение, отображающее нажатие клавиш на различные раскладки.
«Иксам» пророчат скорую кончину. Именно обширность и сложность стандарта побудила разработчиков СПО начать работу над новым стандартом — протоколом Wayland. Wayland достиг определённой стадии зрелости и с переменным успехом внедряется дистрибутивами как графический сервер по умолчанию. Тем не менее, проект Wayland начат в 2008 году, а стандарт X ещё не спешит уходить с голубых экранов.
Оконный менеджер Weston
На скриншоте Weston — эталонная реализация композитного менеджера Wayland. Умеет крутить окошки. А ещё его можно запустить внутри другого рабочего стола, просто выполнив в терминале weston .
После старта графический сервер обслуживает иерархию окон. Существует понятие «корневое окно» (root window), оно, в свою очередь, «владеет» окнами панелей, приложений. Окна приложений «владеют» своими модальными окнами. Обычно обои рабочего стола отрисовываются в корневом окне.
Дисплейный менеджер
Не вполне интуитивно названные, дисплейные менеджеры (DM) рисуют для нас приветливое окошко входа в систему. Обычно, помимо ввода логина и пароля, они позволяют выбрать сессию (при наличии выбора в вашей системе) и задать язык сеанса. Дисплейные менеджеры делают плюс-минус одну и ту же нехитрую работу, их многообразие оправдано консистентностью с различными средами рабочего стола (что зависит, по большей части, от графического тулкита и утилит настройки). Можно жить без дисплейного сервера, как в старые добрые времена. Для этого потребуется настроить ваш
/.xinitrc на запуск необходимого сеанса рабочего стола. Это позволит входить через ядерную консоль и запускать рабочий стол командой startx .
Жизнь без DM
Жизнь c SDDM
Типичные представители дисплейных менеджеров:
GDM из набора GNOME;
SDDM из комплекта KDE;
LightDM — универсальный вариант;
FlyDM — из поставки Astra Linux.
Окружение рабочего стола
Окружения рабочего стола (DE) состоит из ряда стандартных компонентов, таких, как:
панель с треем и меню запуска приложений;
хранитель экрана, он же блокировщик экрана;
браузер, которым никто не пользуется;
почтовый клиент (у зажиточных окружений);
Два могучих окружения, GNOME и KDE, сражаются за сердца простых пользователей, а остальные массовые десктопы им завидуют нередко пользуются их наработками. Некоторые хардкорные пользователи предпочитают собирать окружение рабочего стола самостоятельно на базе оконных менеджеров типа Awesome и i3.
Оконный менеджер Window Maker
На скриншоте оконный менеджер Window Maker из состава GNUstep. GNUstep воспроизводит окружение NeXTSTEP. Поставляется в репозиториях большинства дистрибутивов.
Графические тулкиты
Графический тулкит — библиотека или фреймворк, упрощающая рисование формочек и кнопочек, причём в едином стиле. То, чем занимается Windows Forms на ОС другого производителя, а так же занимался некогда полулярный Motif на старых юниксах (Open Motif доступен поныне).
Флагманами в этой категории долгое время были и остаются GTK и Qt. GTK родился как тулкит для свободного графического редактора GIMP и позже переполз под крыло GNOME. Написан на чистом C с классами, имеет официальные байндинги к Python и C++, а ещё породил целый язык общего назначения Vala. Qt — изначально коммерческий проприетарный тулкит, сейчас является свободным ПО (но по-прежнему коммерческим). Написан на C++ с размахом, заменяя стандартную библиотеку и кучу других библиотек и предлагая метаобъектный компилятор (кодогенератор). Имеет байндинги к куче языков. KDE гордо зиждется на этом великолепии.
Графическое API
Mesa — это каркас для видеовывода. Меза предоставляет API OpenGL и, с не столь давних пор, Vulkan (и несколько других API типа VDPAU и VAAPI). Можно сказать, что Mesa берёт на себя вопросы графики, которыми обычно занимается DirectX в ОС другого производителя.
Безопасность
Обширная часть системы, и я недостаточно компетентен, чтобы в неё углубляться, тем не менее, обзорно рассмотрим.
PAM — Pluggable Authentication Modules — модульная система авторизации. Отвечает, как понятно из названия, за авторизацию пользователей в системе, причём разными способами. Через PAM авторизуются в том числе доменные пользователи, в таком случае PAM действует в связке с имплементацией Kerberos (обычно MIT’овский krb5), поскольку сам по себе PAM не работает с удалёнными клиентами. Модули представляют собой разделяемые библиотеки (исполняемые файлы с суффиксом so ) и позволяют делать интересные штуки при входе пользователя. Например, можно создавать домашнюю директорию при первом входе ( pam_mkhomedir.so ) или монтировать файловые системы ( pam_mount.so ).
Классическая утилита su и более молодая sudo предназначены для исполнения комманд от имени другого пользователя (по умолчанию root ). Наиболее значимая разница — su требует пароль пользователя, из-под которого вы хотите работать, а sudo — ваш пароль. sudo гибко настраивается, позволяя запускать только определённые команды определённым пользователям из-под других определённых пользователей, как-то так.
Менеджер авторизации Polkit позволяет непривилегированным процессам взаимодействовать с привилегированными. По сути он похож на sudo, но обладает превосходящей гибкостью и предназначен в первую очередь для приложений, в то время как sudo — утилита для пользователя. Правила пишутся, внезапно, на JavaScript’е.
Linux Security Modules (LSM) — фреймворк внутри ядра Linux, позволяющий накладывать на систему дополнительные моде́ли безопасности. Это достигается при помощи мо́дулей безопасности, не путать с модулями ядра. Наиболее популярные модули безопасности — SELinux и AppArmor. Первый явлен миру АНБ и развивается Red Hat, второй рождён в рамках ОС Immunix и сегодня развивается Canonical Ltd. Соответственно, SELinux поставляется в RHEL и производных, а AppArmor — в Ubuntu. Оба модуля имеют сходное назначение и привносят в систему мандатное управление доступом. Оба модуля повышают безопасность системы, не позволяя приложениям делать то, что от них не ожидается. Так, сконфигурированные модули безопасности не дадут веб-серверу шариться по диску вне нескольких ожидаемых директорий. Обратной стороной является необходимость конфигурировать систему безопасности для каждого мало-мальски нестандартно настроенного приложения. Не у многих на это хватает энтузиазма, так что обычно модуль безопасности просто переключается в разрешающий режим.
Антивирусные программы для GNU/Linux существуют, но мне не встречались дистрибутивы, где бы они шли из коробки, кроме специализированных решений для сканирования системы.
Подсистема печати
CUPS — «общая система печати UNIX», рождённая компанией Apple. Система модульная, поддерживает огромное количество устройств и, насколько мне известно, на сегодня не имеет альтернатив. А ещё CUPS имеет веб-интерфейс (по умолчанию на localhost:631).
Морда CUPS
CUPS работает только с печатающими устройствами, сканеры поддерживаются фреймворком SANE. К сожалению, спектр поддерживаемых устройств у SANE не очень широк. Некоторые вендорские драйверы для МФУ обеспечивают одновременно работоспособность сканера и работоспособность принтера через CUPS. Так, например, делает HPLIP от HP Inc. Благдаря HPLIP GNU/Linux может похвастаться отличной поддержкой печатающих устройств от HP. В то же время, HPLIP прикручен к CUPS немного сбоку, и часто проблематично настроить устройства HP только утилитами CUPS, как многие другие принтеры. Приходится использовать hp-setup .
Звуковая подсистема
Продолжительное время основной звуковой подсистемой ядра является ALSA. Некоторые пользователи ошибочно считают, что PulseAudio заменил ALSA. Это не так, PulseAudio — это звуковой сервер, являющийся лишь слоем абстракции, упрощающим управление аудиопотоками. Другим аудиосервером является JACK, который предназначен для профессиональной работы с аудио. Он не столь удобен для пользователя, но обеспечивает низкие задержки и предоставляет гибкую маршрутизацию MIDI-потоков.
Red Hat готовит нам PipeWire на замену PulseAudio и JACK. Следим за событиями.
Межпроцессное взаимодействие
Здесь речь не про низкоуровневые POSIX-штуки типа разделяемой памяти и сокеты. За свой век GNU/Linux повидал несколько подсистем, призванных упростить межпроцессное взаимодействие (IPC) десктоп-приложений. Сейчас правит бал шина сообщений D-Bus, а об остальных позабыли. Для чего это нужно? Например, некая служба посылает в шину сообщение об изменении своего состояния, а апплет панели слушает его и изменяет свой индикатор. Так обычно работают апплеты громкости и клавиатурной раскладки.
Традиционно в различных дистрибутивах GNU/Linux сеть настраивалась скриптами (причём различными). NetworkManager — детище Red Hat, созданное, чтобы править всеми интерфейсами. В годы юности NM вызывал приступы фрустрации у пользователей, но потом всё стало неплохо. NetworkManager позволяет управлять проводными и беспроводными интерфейсами, всевозможными тунелями, виртуальными мостами, VLAN’ами и аггрегированными каналами, причём как при помощи графических фронтендов, так и псевдографического nmtui и текстового nmcli . Вещь удобная и универсальная, в дистрибутивах Red Hat, ожидаемо идёт по умолчанию, в Debian и производных идёт только с рабочим столом, а в «безголовом исполнении» NM опционален. Есть альтернативы попроще, например — Wicd.
Работоспособность WiFi-устройств, как правило, обеспечивает демон WPA supplicant, у которого есть конкурент iwd, написанный ни много ни мало, компанией Intel.
Тут же хочется упомянуть демон Bluez, обеспечивающий работу с Bluetooth-устройствами.
Межсетевой экран
Слава iptables гремит далеко за узким кругом бородатых админов. Это не фильтр сам по себе, а лишь набор утилит в пространстве пользователя, работающий с подсистемой Linux Netfilter. Недавно (в историческом масштабе) добавилась подсистема ядра nftables и соответствующая пользовательская утилита nft. Это было сделано, в первую очередь, для унификации интерфейсов таблиц маршрутизации IPv4, IPv6, ARP и софтовых L2-коммутаторов. В современных дистрибутивах команды iptables являются лишь обёрткой для nftables и не рекомендуются к использованию. В целом, конфиг nft выглядит опрятнее дампа iptables.
Существует пачка высокоуровневых фаерволлов-обёрток над nftables (в том числе графических), так в RHEL и производых из коробки идёт firewalld, а в Ubuntu — UFW.
Пакетный менеджер
Пакетный менеджер — это сердце дистрибутива. Наиболее именитые и с длинной историей — это RPM из мира Red Hat и dpkg из семества Debian. Пример более современного — pacman из Arch Linux. Старожилы RPM и dpkg работают только с локальными пакетами: они их распаковывают, устанавливают и проверяют, что все зависимости удовлетворены. Работой с репозиториями занимаются другие утилиты, являющиеся как бы фронтендом к самому пакетному менеджеру. В RHEL ранее поставлялась утилита yum, на замену которой пришла dnf, в Debian раньше были apt-get и apt-cache, затем их увязали в одну команду apt. Более молодой pacman не имеет видимого пользователю разделения на несколько утилит и предлагает очень простой формат пакетов, которые можно собирать буквально на коленке. Есть и множество других, со своими особенностями. Например nix, который позволяет иметь в системе несколько версий одного пакета.
Новое в исторических масштабах явление — кросс-дистрибутивные системы поставки приложений. Появились в попытке преодолеть ад зависимостей, облегчить труд разработчиков и мейнтейнеров (избавив их от необходимости создавать десятки пакетов под разные версии и ветки GNU/Linux). Наиболее популярные проекты: Flatpack от Gnome, Snap от Canonical и AppImage сам по себе. Они несколько отличаются подходами, но в общем случае обеспечивают установку приложений со всем рантаймом и некоторой степенью изоляции от системы. Штуки удобные, однако подход несколько напоминает традиции тащить все зависимости с устанавливаемой программой в популярной ОС другого производителя. Простоты и порядка в систему не добавляют.
Для перечисленного добра есть красивые обёртки в виде магазинов приложений, два самых ходовых — GNOME Software и KDE Discover.
KDE Discover
GNOME Software с фирменной кнопочкой в заголовке окна
Заключение
Краткая результирующая диаграмма:
Современный GNU/Linux в представлении художника
Если присмотреться к перечисленным составляющим GNU/Linux, можно заметить, что львиная доля технологий привносится несколькими крупными организациями. К ним относятся:
проект GNU под эгидой Free Software Foundation;
Red Hat, производитель коммерческого дистрибутива, недавно вошедший в состав IBM;
сообщество kernel.org при поддержке Linux Foundation.
В интернете ради флейма часто вкидывают, мол, поглядите — эти ваши линуксы делают клятые корпорации, где ваше хвалёное сообщество? Я думаю, не стоит противопоставлять отдельных энтузиастов и организации: все они вращают колесо open source. В конце концов, в больших организациях трудятся обычные люди. В итоге мы имеем очень динамичную систему, в которой не без причины компоненты сменяются один за другим, всё это куда-то движется, и, в общем-то, год от года хорошеет. Я надеюсь, в этом очерке удалось дать представление об анатомии GNU/Linux, а может быть и заинтересовать кого-нибудь закопаться поглубже.
Большое спасибо @ajijiadduh, который отловил огромное количество опечаток сразу после публикации, и всем прочим пользователям, указавшим на ошибки.
Правки и предложения вы можете присылать по адресу https://gitlab.com/bergentroll/gnu-linux-anatomy.
Copyright © 2020 Антон «bergentroll» Карманов.
Источник