- Unix / Linux — File Permission / Access Modes
- The Permission Indicators
- File Access Modes
- Write
- Execute
- Directory Access Modes
- Write
- Execute
- Changing Permissions
- Using chmod in Symbolic Mode
- Using chmod with Absolute Permissions
- Changing Owners and Groups
- Changing Ownership
- Changing Group Ownership
- SUID and SGID File Permission
- File Permissions in Linux/Unix: How to Read/Write & Change?
- Ownership of Linux files
- Group
- Other
- Permissions
- Changing file/directory permissions with ‘chmod’ command
- Absolute(Numeric) Mode
- Symbolic Mode
Unix / Linux — File Permission / Access Modes
In this chapter, we will discuss in detail about file permission and access modes in Unix. File ownership is an important component of Unix that provides a secure method for storing files. Every file in Unix has the following attributes −
Owner permissions − The owner’s permissions determine what actions the owner of the file can perform on the file.
Group permissions − The group’s permissions determine what actions a user, who is a member of the group that a file belongs to, can perform on the file.
Other (world) permissions − The permissions for others indicate what action all other users can perform on the file.
The Permission Indicators
While using ls -l command, it displays various information related to file permission as follows −
Here, the first column represents different access modes, i.e., the permission associated with a file or a directory.
The permissions are broken into groups of threes, and each position in the group denotes a specific permission, in this order: read (r), write (w), execute (x) −
The first three characters (2-4) represent the permissions for the file’s owner. For example, -rwxr-xr— represents that the owner has read (r), write (w) and execute (x) permission.
The second group of three characters (5-7) consists of the permissions for the group to which the file belongs. For example, -rwxr-xr— represents that the group has read (r) and execute (x) permission, but no write permission.
The last group of three characters (8-10) represents the permissions for everyone else. For example, -rwxr-xr— represents that there is read (r) only permission.
File Access Modes
The permissions of a file are the first line of defense in the security of a Unix system. The basic building blocks of Unix permissions are the read, write, and execute permissions, which have been described below −
Grants the capability to read, i.e., view the contents of the file.
Write
Grants the capability to modify, or remove the content of the file.
Execute
User with execute permissions can run a file as a program.
Directory Access Modes
Directory access modes are listed and organized in the same manner as any other file. There are a few differences that need to be mentioned −
Access to a directory means that the user can read the contents. The user can look at the filenames inside the directory.
Write
Access means that the user can add or delete files from the directory.
Execute
Executing a directory doesn’t really make sense, so think of this as a traverse permission.
A user must have execute access to the bin directory in order to execute the ls or the cd command.
Changing Permissions
To change the file or the directory permissions, you use the chmod (change mode) command. There are two ways to use chmod — the symbolic mode and the absolute mode.
Using chmod in Symbolic Mode
The easiest way for a beginner to modify file or directory permissions is to use the symbolic mode. With symbolic permissions you can add, delete, or specify the permission set you want by using the operators in the following table.
Adds the designated permission(s) to a file or directory.
Removes the designated permission(s) from a file or directory.
Sets the designated permission(s).
Here’s an example using testfile. Running ls -1 on the testfile shows that the file’s permissions are as follows −
Then each example chmod command from the preceding table is run on the testfile, followed by ls –l, so you can see the permission changes −
Here’s how you can combine these commands on a single line −
Using chmod with Absolute Permissions
The second way to modify permissions with the chmod command is to use a number to specify each set of permissions for the file.
Each permission is assigned a value, as the following table shows, and the total of each set of permissions provides a number for that set.
Sr.No. | Chmod operator & Description |
---|---|
1 |
Number | Octal Permission Representation | Ref |
---|---|---|
0 | No permission | — |
1 | Execute permission | —x |
2 | Write permission | -w- |
3 | Execute and write permission: 1 (execute) + 2 (write) = 3 | -wx |
4 | Read permission | r— |
5 | Read and execute permission: 4 (read) + 1 (execute) = 5 | r-x |
6 | Read and write permission: 4 (read) + 2 (write) = 6 | rw- |
7 | All permissions: 4 (read) + 2 (write) + 1 (execute) = 7 | rwx |
Here’s an example using the testfile. Running ls -1 on the testfile shows that the file’s permissions are as follows −
Then each example chmod command from the preceding table is run on the testfile, followed by ls –l, so you can see the permission changes −
Changing Owners and Groups
While creating an account on Unix, it assigns a owner ID and a group ID to each user. All the permissions mentioned above are also assigned based on the Owner and the Groups.
Two commands are available to change the owner and the group of files −
chown − The chown command stands for «change owner» and is used to change the owner of a file.
chgrp − The chgrp command stands for «change group» and is used to change the group of a file.
Changing Ownership
The chown command changes the ownership of a file. The basic syntax is as follows −
The value of the user can be either the name of a user on the system or the user id (uid) of a user on the system.
The following example will help you understand the concept −
Changes the owner of the given file to the user amrood.
NOTE − The super user, root, has the unrestricted capability to change the ownership of any file but normal users can change the ownership of only those files that they own.
Changing Group Ownership
The chgrp command changes the group ownership of a file. The basic syntax is as follows −
The value of group can be the name of a group on the system or the group ID (GID) of a group on the system.
Following example helps you understand the concept −
Changes the group of the given file to special group.
SUID and SGID File Permission
Often when a command is executed, it will have to be executed with special privileges in order to accomplish its task.
As an example, when you change your password with the passwd command, your new password is stored in the file /etc/shadow.
As a regular user, you do not have read or write access to this file for security reasons, but when you change your password, you need to have the write permission to this file. This means that the passwd program has to give you additional permissions so that you can write to the file /etc/shadow.
Additional permissions are given to programs via a mechanism known as the Set User ID (SUID) and Set Group ID (SGID) bits.
When you execute a program that has the SUID bit enabled, you inherit the permissions of that program’s owner. Programs that do not have the SUID bit set are run with the permissions of the user who started the program.
This is the case with SGID as well. Normally, programs execute with your group permissions, but instead your group will be changed just for this program to the group owner of the program.
The SUID and SGID bits will appear as the letter «s» if the permission is available. The SUID «s» bit will be located in the permission bits where the owners’ execute permission normally resides.
For example, the command −
Shows that the SUID bit is set and that the command is owned by the root. A capital letter S in the execute position instead of a lowercase s indicates that the execute bit is not set.
If the sticky bit is enabled on the directory, files can only be removed if you are one of the following users −
- The owner of the sticky directory
- The owner of the file being removed
- The super user, root
To set the SUID and SGID bits for any directory try the following command −
Источник
File Permissions in Linux/Unix: How to Read/Write & Change?
Updated October 7, 2021
Linux is a clone of UNIX, the multi-user operating system which can be accessed by many users simultaneously. Linux can also be used in mainframes and servers without any modifications. But this raises security concerns as an unsolicited or malign user can corrupt, change or remove crucial data. For effective security, Linux divides authorization into 2 levels.
In this Linux file commands tutorial, you will learn-
The concept of Linux File permission and ownership is crucial in Linux. Here, we will explain Linux permissions and ownership and will discuss both of them. Let us start with the Ownership.

Click here if the video is not accessible
Ownership of Linux files
Every file and directory on your Unix/Linux system is assigned 3 types of owner, given below.
A user is the owner of the file. By default, the person who created a file becomes its owner. Hence, a user is also sometimes called an owner.
Group
A user- group can contain multiple users. All users belonging to a group will have the same Linux group permissions access to the file. Suppose you have a project where a number of people require access to a file. Instead of manually assigning permissions to each user, you could add all users to a group, and assign group permission to file such that only this group members and no one else can read or modify the files.
Other
Any other user who has access to a file. This person has neither created the file, nor he belongs to a usergroup who could own the file. Practically, it means everybody else. Hence, when you set the permission for others, it is also referred as set permissions for the world.
Now, the big question arises how does Linux distinguish between these three user types so that a user ‘A’ cannot affect a file which contains some other user ‘B’s’ vital information/data. It is like you do not want your colleague, who works on your Linux computer, to view your images. This is where Permissions set in, and they define user behavior.
Let us understand the Permission system on Linux.
Permissions
Every file and directory in your UNIX/Linux system has following 3 permissions defined for all the 3 owners discussed above.
- Read: This permission give you the authority to open and read a file. Read permission on a directory gives you the ability to lists its content.
- Write: The write permission gives you the authority to modify the contents of a file. The write permission on a directory gives you the authority to add, remove and rename files stored in the directory. Consider a scenario where you have to write permission on file but do not have write permission on the directory where the file is stored. You will be able to modify the file contents. But you will not be able to rename, move or remove the file from the directory.
- Execute: In Windows, an executable program usually has an extension “.exe” and which you can easily run. In Unix/Linux, you cannot run a program unless the execute permission is set. If the execute permission is not set, you might still be able to see/modify the program code(provided read & write permissions are set), but not run it.
File Permissions in Linux/Unix
Let’s see file permissions in Linux with examples:
ls – l on terminal gives
Here, we have highlighted ‘-rw-rw-r–‘and this weird looking code is the one that tells us about the Unix permissions given to the owner, user group and the world.
Here, the first ‘–‘ implies that we have selected a file.p>
Else, if it were a directory, d would have been shown.
The characters are pretty easy to remember.
r = read permission
w = write permission
x = execute permission
– = no permission
Let us look at it this way.
The first part of the code is ‘rw-‘. This suggests that the owner ‘Home’ can:
- Read the file
- Write or edit the file
- He cannot execute the file since the execute bit is set to ‘-‘.
By design, many Linux distributions like Fedora, CentOS, Ubuntu, etc. will add users to a group of the same group name as the user name. Thus, a user ‘tom’ is added to a group named ‘tom’.
The second part is ‘rw-‘. It for the user group ‘Home’ and group-members can:
- Read the file
- Write or edit the file
The third part is for the world which means any user. It says ‘r–‘. This means the user can only:
Changing file/directory permissions with ‘chmod’ command
Say you do not want your colleague to see your personal images. This can be achieved by changing file permissions.
We can use the ‘chmod’ command which stands for ‘change mode’. Using the command, we can set permissions (read, write, execute) on a file/directory for the owner, group and the world.
Syntax:
There are 2 ways to use the command –
- Absolute mode
- Symbolic mode
Absolute(Numeric) Mode
In this mode, file permissions are not represented as characters but a three-digit octal number.
The table below gives numbers for all for permissions types.
Number | Permission Type | Symbol |
---|---|---|
0 | No Permission | — |
1 | Execute | –x |
2 | Write | -w- |
3 | Execute + Write | -wx |
4 | Read | r– |
5 | Read + Execute | r-x |
6 | Read +Write | rw- |
7 | Read + Write +Execute | rwx |
Let’s see the chmod permissions command in action.
In the above-given terminal window, we have changed the permissions of the file ‘sample to ‘764’.
‘764’ absolute code says the following:
- Owner can read, write and execute
- Usergroup can read and write
- World can only read
This is shown as ‘-rwxrw-r–
This is how you can change user permissions in Linux on file by assigning an absolute number.
Symbolic Mode
In the Absolute mode, you change permissions for all 3 owners. In the symbolic mode, you can modify permissions of a specific owner. It makes use of mathematical symbols to modify the Unix file permissions.
Adds a permission to a file or directory
Removes the permission
Sets the permission and overrides the permissions set earlier.
Источник
Operator | Description |
---|---|