Ssl ���������� ��������� linux

Вопрос №2873 от пользователя user-6665a52879acc00a в уроке «Установка и настройка PHP», курс «PHP: Начало работы»

Проблема с phpcs и с установкой pear, при запуске phpcs, ошибки по типу

Проблема, скорее всего, в том, что так и не установился pear. Делаю с консоли babun(а):

скачивается нужный файл, затем:

и вот на этом моменте, в независисоти от выбора «l» «local» «yes» «1» и т.д. ничего не происходит. Будто бы идет выполнение, но в итоге так ничего и не происходит.

Этот вопрос хочет от вас услышать в ответ system либо local , причем system уже выбран по умолчанию. Я думаю что все сработает если вы просто нажмете enter без ввода чего-либо.

Я думаю что все сработает если вы просто нажмете enter без ввода чего-либо.

К сожалению нет, ничего не происходит. Если выбирать system либо local, или если просто нажимать enter. Консоль висит, позволяет дальше что-то вводить но уже ничего не исполняется в ней.

Вам лучше написать в slack-ru.hexlet.io в канал #php. Я с windows не работаю очень много лет и не знаю как там что.

Я конечно знаю, что поздно отвечаю, но просто нажми enter и все. Установка пойдет.

Я конечно знаю, что поздно отвечаю, но просто нажми enter и все. Установка пойдет.

Ну я бы додумался до этого), это к сожалению не помогает.

У меня просто была такая же ситуация и на этом вопросе нажал на enter, операция пошла дальше :/

Кто-нибудь разобрался с проблемой?

Решить проблему получилось? У меня такая же ситуация.

Была та же проблема. Из под Babun не срабатывало ничего в этом месте:

Решение: запускать из powershell

Через эту командную строку таких проблем не имеем.

Есть вопрос или хотите участвовать в обсуждении?

С нуля до разработчика. Возвращаем деньги, если не удалось найти работу.

Hexlet Ltd. UMA Esplanadi, Pohjoisesplanadi 39, 00100 Helsinki, Finland VAT ID: FI26641607

Источник

«Как это работает»: знакомство с SSL/TLS

Мы достаточно часто рассказываем о разных технологиях: от систем хранения до резервного копирования. Помимо этого мы делимся собственным опытом оптимизации работы нашего IaaS-провайдера — говорим об управленческих аспектах и возможностях для улучшения usability сервиса.

Сегодня мы решили затронуть тему безопасности и поговорить об SSL. Всем известно, что сертификаты обеспечивают надежное соединение, а мы разберёмся в том, как именно это происходит, и взглянем на используемые протоколы.

SSL (secure sockets layer — уровень защищённых cокетов) представляет собой криптографический протокол для безопасной связи. С версии 3.0 SSL заменили на TLS (transport layer security — безопасность транспортного уровня), но название предыдущей версии прижилось, поэтому сегодня под SSL чаще всего подразумевают TLS.

Цель протокола — обеспечить защищенную передачу данных. При этом для аутентификации используются асимметричные алгоритмы шифрования (пара открытый — закрытый ключ), а для сохранения конфиденциальности — симметричные (секретный ключ). Первый тип шифрования более ресурсоемкий, поэтому его комбинация с симметричным алгоритмом помогает сохранить высокую скорость обработки данных.

Рукопожатие

Когда пользователь заходит на веб-сайт, браузер запрашивает информацию о сертификате у сервера, который высылает копию SSL-сертификата с открытым ключом. Далее, браузер проверяет сертификат, название которого должно совпадать с именем веб-сайта.

Кроме того, проверяется дата действия сертификата и наличие корневого сертификата, выданного надежным центром сертификации. Если браузер доверяет сертификату, то он генерирует предварительный секрет (pre-master secret) сессии на основе открытого ключа, используя максимально высокий уровень шифрования, который поддерживают обе стороны.

Сервер расшифровывает предварительный секрет с помощью своего закрытого ключа, соглашается продолжить коммуникацию и создать общий секрет (master secret), используя определенный вид шифрования. Теперь обе стороны используют симметричный ключ, который действителен только для данной сессии. После ее завершения ключ уничтожается, а при следующем посещении сайта процесс рукопожатия запускается сначала.

Алгоритмы шифрования

Для симметричного шифрования использовались разные алгоритмы. Первым был блочный шифр DES, разработанный компанией IBM. В США его утвердили в качестве стандарта в 70-х годах. В основе алгоритма лежит сеть Фейстеля с 16-ю циклами. Длина ключа составляет 56 бит, а блока данных — 64.

Развитием DES является алгоритм 3DES. Он создавался с целью совершенствования короткого ключа в алгоритме-прародителе. Размер ключа и количество циклов шифрования увеличилось в три раза, что снизило скорость работы, но повысило надежность.

Еще был блочный шифр RC2 с переменной длиной ключа, который работал быстрее DES, а его 128-битный ключ был сопоставим с 3DES по надежности. Потоковый шифр RC4 был намного быстрее блочных и строился на основе генератора псевдослучайных битов. Но сегодня все эти алгоритмы считаются небезопасными или устаревшими.

Читайте также:  Hashcat plus для windows

Самым современным признан стандарт AES, который официально заменил DES в 2002 году. Он основан на блочном алгоритме Rijndael и скорость его работы в 6 раз выше по сравнению с 3DES. Размер блока здесь равен 128 битам, а размер ключа — 128/192/256 битам, а количество раундов шифрования зависит от размера ключа и может составлять 10/12/14 соответственно.

Что касается асимметричного шифрования, то оно чаще всего строится на базе таких алгоритмов, как RSA, DSA или ECC. RSA (назван в честь авторов Rivest, Shamir и Adleman) используется и для шифрования, и для цифровой подписи. Алгоритм основан на сложности факторизации больших чисел и поддерживает все типы SSL-сертификатов.

DSA (Digital Signature Algorithm) используется только для создания цифровой подписи и основан на вычислительной сложности взятия логарифмов в конечных полях. По безопасности и производительности полностью сопоставим с RSA.

ECC (Elliptic Curve Cryptography) определяет пару ключей с помощью точек на кривой и используется только для цифровой подписи. Основным преимуществом алгоритма является более высокий уровень надежности при меньшей длине ключа (256-битный ECC-ключ сопоставим по надежности с 3072-битным RSA-ключом.

Более короткий ключ также влияет на время обработки данных, которое заметно сокращается. Этот факт и то, что алгоритм эффективно обрабатывает большое количество подключений, сделали его удобным инструментом для работы с мобильной связью. В SSL-сертификатах можно использовать сразу несколько методов шифрования для большей защиты.

Хеш и MAC

Цель хеш-алгоритма — преобразовывать все содержимое SSL-сертификата в битовую строку фиксированной длины. Для шифрования значения хеша применяется закрытый ключ центра сертификации, который включается в сертификат как подпись.

Хеш-алгоритм также использует величину, необходимую для проверки целостности передаваемых данных — MAC (message authentication code). MAC использует функцию отображения, чтобы представлять данные сообщения как фиксированное значение длины, а затем хеширует сообщение.

В протоколе TLS применяется HMAC (hashed message authentication code), который использует хеш-алгоритм сразу с общим секретным ключом. Здесь ключ прикрепляется к данным, и для подтверждения их подлинности обе стороны должны использовать одинаковые секретные ключи, что обеспечивает большую безопасность.

Все алгоритмы шифрования сегодня поддерживают алгоритм хеширования SHA2, чаще всего именно SHA-256. SHA-512 имеет похожую структуру, но в нем длина слова равна 64 бита (вместо 32), количество раундов в цикле равно 80 (вместо 64), а сообщение разбивается на блоки по 1024 бита (вместо 512 бит). Раньше для тех же целей применялся алгоритм SHA1 и MD5, но сегодня они считаются уязвимыми.

Разговоры об отказе от SHA1 велись достаточно давно, но в конце февраля алгоритм был официально взломан. Исследователям удалось добиться коллизии хешей, то есть одинакового хеша для двух разных файлов, что доказало небезопасность использования алгоритма для цифровых подписей. Первая попытка была сделана еще в 2015, хотя тогда удалось подобрать только те сообщения, хеш которых совпадал. Сегодня же речь идет о целых документах.

Сертификаты бывают разные

Теперь, когда мы разобрались, что представляет собой протокол SSL/TLS и как происходит соединений на его основе, можно поговорить и о видах сертификатов.

Domain Validation, или сертификаты с проверкой домена, подходят для некоммерческих сайтов, так как они подтверждают только веб-сервер, обслуживающий определенный сайт, на который был осуществлен переход. Этот вид сертификата самый дешевый и популярный, но не может считаться полностью безопасным, так как содержит только информацию о зарегистрированном доменном имени.

Organization Validation, или сертификаты с проверкой организации, являются более надежными, так как подтверждают еще регистрационные данные компании-владельца. Эту информацию юридическое лицо обязано предоставить при покупке сертификата, а удостоверяющий центр может связаться напрямую с компанией для подтверждения этой информации. Сертификат отвечает стандартам RFC и содержит информацию о том, кто его подтвердил, но данные о владельце не отображаются.

Extended Validation, или сертификат с расширенной проверкой, считается самым надежным. Собственно, зеленый замочек или ярлык в браузере означает как раз то, что у сайта есть именно такой сертификат. О том, как разные браузеры информируют пользователей о наличии сертификата или возникающих ошибках можно почитать тут.

Он нужен веб-сайтам, которые проводят финансовые транзакции и требуют высокий уровень конфиденциальности. Однако многие сайты предпочитают перенаправлять пользователей для совершения платежей на внешние ресурсы, подтвержденные сертификатами с расширенной проверкой, при этом используя сертификаты OV, которых вполне хватает для защиты остальных данных пользователей.

Кроме того, сертификаты могут различаться в зависимости от количества доменов, на которые они были выданы. Однодоменные сертификаты (Single Certificate) привязываются к одному домену, который указывается при покупке. Мультидоменные сертификаты (типа Subject Alternative Name, Unified Communications Certificate, Multi Domain Certificate) будут действовать уже для большего числа доменных имен и серверов, которые также определяются при заказе. Однако за включение дополнительных доменов, свыше определенной нормы, потребуется платить отдельно.

Еще существуют поддоменные сертификаты (типа WildCard), которые охватывают все поддомены указанного при регистрации доменного имени. Иногда могут потребоваться сертификаты, которые будут одновременно включать не только несколько доменов, но и поддомены. В таких случаях можно приобрести сертификаты типа Comodo PositiveSSL Multi-Domain Wildcard и Comodo Multi-Domain Wildcard SSL или (лайфхак) обычный мультидоменный сертификат, где в списке доменов указать также и нужные поддоменные имена.

Читайте также:  Acronis backup recovery linux server

Получить SSL-сертификат можно и самостоятельно: пара ключей для этого генерируется через любой генератор, например, бесплатный OpenSSL. И такой защищенный канал связи вполне получится использовать для внутренних целей: между устройствами своей сети или приложениями. Но вот для использования на веб-сайте сертификат необходимо приобретать официально, чтобы в цепочке подтверждения сертификатов обязательно имелся корневой сертификат, браузеры не показывали сообщений о небезопасном соединении, а пользователи были спокойны за свои данные.

Источник

Символы Unicode: о чём должен знать каждый разработчик

Если вы пишете международное приложение, использующее несколько языков, то вам нужно кое-что знать о кодировке. Она отвечает за то, как текст отображается на экране. Я вкратце расскажу об истории кодировки и о её стандартизации, а затем мы поговорим о её использовании. Затронем немного и теорию информатики.

Введение в кодировку

Компьютеры понимают лишь двоичные числа — нули и единицы, это их язык. Больше ничего. Одно число называется байтом, каждый байт состоит из восьми битов. То есть восемь нулей и единиц составляют один байт. Внутри компьютеров всё сводится к двоичности — языки программирования, движений мыши, нажатия клавиш и все слова на экране. Но если статья, которую вы читаете, раньше была набором нулей и единиц, то как двоичные числа превратились в текст? Давайте разберёмся.

Краткая история кодировки

На заре своего развития интернет был исключительно англоязычным. Его авторам и пользователям не нужно было заботиться о символах других языков, и все нужды полностью покрывала кодировка American Standard Code for Information Interchange (ASCII).

ASCII — это таблица сопоставления бинарных обозначений знакам алфавита. Когда компьютер получает такую запись:

то с помощью ASCII он преобразует её во фразу «Hello world».

Один байт (восемь бит) был достаточно велик, чтобы вместить в себя любую англоязычную букву, как и управляющие символы, часть из которых использовалась телепринтерами, так что в те годы они были полезны (сегодня уже не особо). К управляющим символам относился, например 7 (0111 в двоичном представлении), который заставлял компьютер издавать сигнал; 8 (1000 в двоичном представлении) — выводил последний напечатанный символ; или 12 (1100 в двоичном представлении) — стирал весь написанный на видеотерминале текст.

В те времена компьютеры считали 8 бит за один байт (так было не всегда), так что проблем не возникало. Мы могли хранить все управляющие символы, все числа и англоязычные буквы, и даже ещё оставалось место, поскольку один байт может кодировать 255 символов, а для ASCII нужно только 127. То есть неиспользованными оставалось ещё 128 позиций в кодировке.

Вот как выглядит таблица ASCII. Двоичными числами кодируются все строчные и прописные буквы от A до Z и числа от 0 до 9. Первые 32 позиции отведены для непечатаемых управляющих символов.

Проблемы с ASCII

Позиции со 128 по 255 были пустыми. Общественность задумалась, чем их заполнить. Но у всех были разные идеи. Американский национальный институт стандартов (American National Standards Institute, ANSI) формулирует стандарты для разных отраслей. Там утвердили позиции ASCII с 0 по 127. Их никто не оспаривал. Проблема была с остальными позициями.

Вот чем были заполнены позиции 128-255 в первых компьютерах IBM:

Какие-то загогулины, фоновые иконки, математические операторы и символы с диакретическим знаком вроде é. Но разработчики других компьютерных архитектур не поддержали инициативу. Всем хотелось внедрить свою собственную кодировку во второй половине ASCII.

Все эти различные концовки назвали кодовыми страницами.

Что такое кодовые страницы ASCII?

Здесь собрана коллекция из более чем 465 разных кодовых страниц! Существовали разные страницы даже в рамках какого-то одного языка, например, для греческого и китайского. Как можно было стандартизировать этот бардак? Или хотя бы заставить его работать между разными языками? Или между разными кодовыми страницами для одного языка? В языках, отличающихся от английского? У китайцев больше 100 000 иероглифов. ASCII даже не может всех их вместить, даже если бы решили отдать все пустые позиции под китайские символы.

Эта проблема даже получила название Mojibake (бнопня, кракозябры). Так говорят про искажённый текст, который получается при использовании некорректной кодировки. В переводе с японского mojibake означает «преобразование символов».

Пример бнопни (кракозябров).

Безумие какое-то.

Именно! Не было ни единого шанса надёжно преобразовывать данные. Интернет — это лишь монструозное соединение компьютеров по всему миру. Представьте, что все страны решили использовать собственные стандарты. Например, греческие компьютеры принимают только греческий язык, а английские отправляют только английский. Это как кричать в пустой пещере, тебя никто не услышит.

ASCII уже не удовлетворял жизненным требованиям. Для всемирного интернета нужно было создать что-то другое, либо пришлось бы иметь дело с сотнями кодовых страниц.

��� Если только ������ вы не хотели ��� бы ��� читать подобные параграфы. �֎֏0590֐��׀ׁׂ׃ׅׄ׆ׇ

Так появился Unicode

Unicode расшифровывают как Universal Coded Character Set (UCS), и у него есть официальное обозначение ISO/IEC 10646. Но обычно все используют название Unicode.

Этот стандарт помог решить проблемы, возникавшие из-за кодировки и кодовых страниц. Он содержит множество кодовых пунктов (кодовых точек), присвоенных символам из языков и культур со всего мира. То есть Unicode — это набор символов. С его помощью можно сопоставить некую абстракцию с буквой, на которую мы хотим ссылаться. И так сделано для каждого символа, даже египетских иероглифов.

Читайте также:  Не запускается dirt rally windows 10

Кто-то проделал огромную работу, сопоставляя каждый символ во всех языках с уникальными кодами. Вот как это выглядит:

Префикс U+ говорит о том, что это стандарт Unicode, а число — это результат преобразования двоичных чисел. Стандарт использует шестнадцатеричную нотацию, которая является упрощённым представлением двоичных чисел. Здесь вы можете ввести в поле что угодно и посмотреть, как это будет преобразовано в Unicode. А здесь можно полюбоваться на все 143 859 кодовых пунктов.

Уточню на всякий случай: речь идёт о большом словаре кодовых пунктов, присвоенных всевозможным символам. Это очень большой набор символов, не более того.

Осталось добавить последний ингредиент.

Unicode Transform Protocol (UTF)

UTF — протокол кодирования кодовых пунктов в Unicode. Он прописан в стандарте и позволяет кодировать любой кодовый пункт. Однако существуют разные типы UTF. Они различаются количеством байтов, используемых для кодировки одного пункта. В UTF-8 используется один байт на пункт, в UTF-16 — два байта, в UTF-32 — четыре байта.

Но если у нас есть три разные кодировки, то как узнать, какая из них применяется в конкретном файле? Для этого используют маркер последовательности байтов (Byte Order Mark, BOM), который ещё называют сигнатурой кодировки (Encoding Signature). BOM — это двухбайтный маркер в начале файл, который говорит о том, какая именно кодировка тут применена.

В интернете чаще всего используют UTF-8, она также прописана как предпочтительная в стандарте HTML5, так что уделю ей больше всего внимания.

Этот график построен в 2012-м, UTF-8 становилась доминирующей кодировкой. И всё ещё ею является.

Что такое UTF-8 и как она работает?

UTF-8 кодирует с помощью одного байта каждый кодовый пункт Unicode с 0 по 127 (как в ASCII). То есть если вы писали программу с использованием ASCII, а ваши пользователи применяют UTF-8, они не заметят ничего необычного. Всё будет работать как задумано. Обратите внимание, как это важно. Нам нужно было сохранить обратную совместимость с ASCII в ходе массового внедрения UTF-8. И эта кодировка ничего не ломает.

Как следует из названия, кодовый пункт состоит из 8 битов (один байт). В Unicode есть символы, которые занимают несколько байтов (вплоть до 6). Это называют переменной длиной. В разных языках удельное количество байтов разное. В английском — 1, европейские языки (с латинским алфавитом), иврит и арабский представлены с помощью двух байтов на кодовый пункт. Для китайского, японского, корейского и других азиатских языков используют по три байта.

Если нужно, чтобы символ занимал больше одного байта, то применяется битовая комбинация, обозначающая переход — он говорит о том, что символ продолжается в нескольких следующих байтах.

И теперь мы, как по волшебству, пришли к соглашению, как закодировать шумерскую клинопись (Хабр её не отображает), а также значки emoji!

Подытожив сказанное: сначала читаем BOM, чтобы определить версию кодировки, затем преобразуем файл в кодовые пункты Unicode, а потом выводим на экран символы из набора Unicode.

Напоследок про UTF

Коды являются ключами. Если я отправлю ошибочную кодировку, вы не сможете ничего прочесть. Не забывайте об этом при отправке и получении данных. В наших повседневных инструментах это часто абстрагировано, но нам, программистам, важно понимать, что происходит под капотом.

Как нам задавать кодировку? Поскольку HTML пишется на английском, и почти все кодировки прекрасно работают с английским, мы можем указать кодировку в начале раздела .

Важно сделать это в самом начале , поскольку парсинг HTML может начаться заново, если в данный момент используется неправильная кодировка. Также узнать версию кодировки можно из заголовка Content-Type HTTP-запроса/ответа.

Если HTML-документ не содержит упоминания кодировки, спецификация HTML5 предлагает такое интересное решение, как BOM-сниффинг. С его помощью мы по маркеру порядка байтов (BOM) можем определить используемую кодировку.

Это всё?

Unicode ещё не завершён. Как и в случае с любым стандартом, мы что-то добавляем, убираем, предлагаем новое. Никакие спецификации нельзя назвать «завершёнными». Обычно в год бывает 1-2 релиза, найти их описание можно здесь.

Если вы дочитали до конца, то вы молодцы. Предлагаю сделать домашнюю работу. Посмотрите, как могут ломаться сайты при использовании неправильной кодировки. Я воспользовался этим расширением для Google Chrome, поменял кодировку и попытался открывать разные страницы. Информация была совершенно нечитаемой. Попробуйте сами, как выглядит бнопня. Это поможет понять, насколько важна кодировка.

Заключение

При написании этой статьи я узнал о Майкле Эверсоне. С 1993 года он предложил больше 200 изменений в Unicode, добавил в стандарт тысячи символов. По состоянию на 2003 год он считался самым продуктивным участником. Он один очень сильно повлиял на облик Unicode. Майкл — один из тех, кто сделал интернет таким, каким мы его сегодня знаем. Очень впечатляет.

Надеюсь, мне удалось показать вам, для чего нужны кодировки, какие проблемы они решают, и что происходит при их сбоях.

Источник

Оцените статью